Full Text:   <2938>

CLC number: TP273

On-line Access: 2011-03-09

Received: 2010-07-03

Revision Accepted: 2010-10-15

Crosschecked: 2011-01-25

Cited: 6

Clicked: 7766

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2011 Vol.12 No.3 P.190-200

http://doi.org/10.1631/jzus.A1000316


Multi-loop adaptive internal model control based on a dynamic partial least squares model


Author(s):  Zhao Zhao, Bin Hu, Jun Liang

Affiliation(s):  State Key Lab of Industrial Control Technology, Department of Control Science & Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   jliang@iipc.zju.edu.cn

Key Words:  Partial least squares (PLS), Adaptive internal model control (IMC), Recursive least squares (RLS)


Zhao Zhao, Bin Hu, Jun Liang. Multi-loop adaptive internal model control based on a dynamic partial least squares model[J]. Journal of Zhejiang University Science A, 2011, 12(3): 190-200.

@article{title="Multi-loop adaptive internal model control based on a dynamic partial least squares model",
author="Zhao Zhao, Bin Hu, Jun Liang",
journal="Journal of Zhejiang University Science A",
volume="12",
number="3",
pages="190-200",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000316"
}

%0 Journal Article
%T Multi-loop adaptive internal model control based on a dynamic partial least squares model
%A Zhao Zhao
%A Bin Hu
%A Jun Liang
%J Journal of Zhejiang University SCIENCE A
%V 12
%N 3
%P 190-200
%@ 1673-565X
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000316

TY - JOUR
T1 - Multi-loop adaptive internal model control based on a dynamic partial least squares model
A1 - Zhao Zhao
A1 - Bin Hu
A1 - Jun Liang
J0 - Journal of Zhejiang University Science A
VL - 12
IS - 3
SP - 190
EP - 200
%@ 1673-565X
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000316


Abstract: 
A multi-loop adaptive internal model control (IMC) strategy based on a dynamic partial least squares (PLS) framework is proposed to account for plant model errors caused by slow aging, drift in operational conditions, or environmental changes. Since PLS decomposition structure enables multi-loop controller design within latent spaces, a multivariable adaptive control scheme can be converted easily into several independent univariable control loops in the PLS space. In each latent subspace, once the model error exceeds a specific threshold, online adaptation rules are implemented separately to correct the plant model mismatch via a recursive least squares (RLS) algorithm. Because the IMC extracts the inverse of the minimum part of the internal model as its structure, the IMC controller is self-tuned by explicitly updating the parameters, which are parts of the internal model. Both parameter convergence and system stability are briefly analyzed, and proved to be effective. Finally, the proposed control scheme is tested and evaluated using a widely-used benchmark of a multi-input multi-output (MIMO) system with pure delay.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdel-Rahman, A.I., Lim, G.J., 2009. A nonlinear partial least squares algorithm using quadratic fuzzy inference system. Journal of Chemometrics, 23(10):530-537.

[2]Astrom, K.J., Wittenmark, B., 1973. Self tuning regulators. Automatica, 9(2):185-199.

[3]Astrom, K.J., Borisson, U., Ljung, L., Wittenmark, B., 1977. Theory and applications of self-tuning regulators. Automatica, 13(5):457-476.

[4]Bang, Y.H., Yoo, C.K., Lee, I.B., 2002. Nonlinear PLS modeling with fuzzy inference system. Chemometrics and Intelligent Laboratory Systems, 64(2):137-155.

[5]Chen, J.H., Cheng, Y.C., 2004. Applying partial least squares based decomposition structure to multiloop adaptive proportional-integral-derivative controllers in nonlinear processes. Industrial & Engineering Chemistry Research, 43(18):5888-5898.

[6]Chen, J.H., Cheng, Y.C., Yea, Y.Z., 2005. Multiloop PID controller design using partial least squares decoupling structure. Korean Journal of Chemical Engineering, 22(2):173-183.

[7]Datta, A., Ochoa, J., 1996. Adaptive internal model control design and stability analysis. Automatica, 32(2):261-266.

[8]Datta, A., Ochoa, J., 1998. Adaptive internal model control: H2 optimization for stable plants. Automatica, 34(1):75-82.

[9]Datta, A., Xing, L., 1998. The Theory and Design of Adaptive Internal Model Control Schemes. Proceedings of the American Control Conference, Philadelphia, PA, USA, 6:3677-3684.

[10]Datta, A., Xing, L., 1999. Adaptive internal model control: H infinity optimization for stable plants. IEEE Transactions on Automatic Control, 44(11):2130-2134.

[11]Doymaz, F., Palazoglu, A., Romagnoli, J.A., 2003. Orthogonal nonlinear partial least-squares regression. Industrial & Engineering Chemistry Research, 42(23):5836-5849.

[12]Garcia, C.E., Morari, M., 1982. Internal model control. A unifying review and some new results. Industrial & Engineering Chemistry Process Design and Development, 21(2):308-323.

[13]Geladi, P., Kowalski, B.R., 1986. Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185:1-17.

[14]Goodwin, G.C., Ramadge, P.J., Caines, P.E., 1980. Discrete-time multivariable adaptive control. IEEE Transactions on Automatic Control, 25(3):449-456.

[15]Hu, B., Zheng, P.Y., Liang, J., 2010. Multi-loop internal model controller design based on a dynamic PLS framework. Chinese Journal of Chemical Engineering, 18(2):277-285.

[16]Kaspar, M.H., Ray, W.H., 1992. Chemometric methods for process monitoring and high-performance controller- design. AIChE Journal, 38(10):1593-1608.

[17]Kaspar, M.H., Ray, W.H., 1993. Dynamic PLS modeling for process control. Chemical Engineering Science 48(20):3447-3461.

[18]Qi, D.L., Yao, L.B., 2004. Hybrid internal model control and proportional control of chaotic dynamical systems. Journal of Zhejiang University-SCIENCE, 5(1):62-67.

[19]Qin, S.J., Mcavoy, T.J., 1992. Nonlinear PLS modeling using neural networks. Computers & Chemical Engineering, 16(4):379-391.

[20]Sastry, S.M.B., 1994. Adaptive Control: Stability, Convergence, and Robustness. Prentice Hall, New Jersey, USA.

[21]Su, C.L., Wang, S.Q., 2006. Robust model predictive control for discrete uncertain nonlinear systems with time-delay via fuzzy model. Journal of Zhejiang University-SCIENCE A, 7(10):1723-1732.

[22]Wold, S., 1992. Nonlinear partial least-squares modeling II. Spline inner relation. Chemometrics and Intelligent Laboratory Systems, 14(1-3):71-84.

[23]Wold, S., Kettanehwold, N., Skagerberg, B., 1989. Nonlinear PLS modeling. Chemometrics and Intelligent Laboratory Systems, 7(1-2):53-65.

[24]Wold, S., Sjostrom, M., Eriksson, L., 2001. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2):109-130.

[25]Xie, W.F., Rad, A.B., 2000. Fuzzy adaptive internal model control. IEEE Transactions on Industrial Electronics, 47(1):193-202.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE