Full Text:   <2970>

CLC number: R318

On-line Access: 2011-06-07

Received: 2010-08-27

Revision Accepted: 2011-02-21

Crosschecked: 2011-05-24

Cited: 1

Clicked: 5571

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2011 Vol.12 No.6 P.438-445

http://doi.org/10.1631/jzus.A1000386


A novel non-iterative shape method for estimating the decay time constant of the finger photoplethysmographic pulse


Author(s):  Ling-xiao Hou, Ming Wei, Xuan Wang, Xin-zhong Chen, Ying Feng, Kai Jiang

Affiliation(s):  Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China, Department of Anaesthesia, Women’s Hospital, Hangzhou 310006, China, Institute of Space Medical Engineering, Beijing 100094, China

Corresponding email(s):   beasthlx@163.com, jiangkai1979@vip.sina.com

Key Words:  Photoplethysmogram (PPG), Decay time constant, Non-iterative shape method (NSM), Area difference ratio (ADR)


Ling-xiao Hou, Ming Wei, Xuan Wang, Xin-zhong Chen, Ying Feng, Kai Jiang. A novel non-iterative shape method for estimating the decay time constant of the finger photoplethysmographic pulse[J]. Journal of Zhejiang University Science A, 2011, 12(6): 438-445.

@article{title="A novel non-iterative shape method for estimating the decay time constant of the finger photoplethysmographic pulse",
author="Ling-xiao Hou, Ming Wei, Xuan Wang, Xin-zhong Chen, Ying Feng, Kai Jiang",
journal="Journal of Zhejiang University Science A",
volume="12",
number="6",
pages="438-445",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000386"
}

%0 Journal Article
%T A novel non-iterative shape method for estimating the decay time constant of the finger photoplethysmographic pulse
%A Ling-xiao Hou
%A Ming Wei
%A Xuan Wang
%A Xin-zhong Chen
%A Ying Feng
%A Kai Jiang
%J Journal of Zhejiang University SCIENCE A
%V 12
%N 6
%P 438-445
%@ 1673-565X
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000386

TY - JOUR
T1 - A novel non-iterative shape method for estimating the decay time constant of the finger photoplethysmographic pulse
A1 - Ling-xiao Hou
A1 - Ming Wei
A1 - Xuan Wang
A1 - Xin-zhong Chen
A1 - Ying Feng
A1 - Kai Jiang
J0 - Journal of Zhejiang University Science A
VL - 12
IS - 6
SP - 438
EP - 445
%@ 1673-565X
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000386


Abstract: 
The photoplethysmogram (PPG) of a pulse wave, similar in appearance to the arterial blood pressure (ABP) waveform, contains rich information about the cardiovascular system. The decay time constant RC, equal to the product of peripheral resistance R and total arterial compliance C, is a meaningful cardiovascular model parameter in vascular assessment. Using or ameliorating the existing ABP methods does not achieve a satisfactory estimation of RC from the PPG volume pulse (VRC). Thus, a novel non-iterative shape method (NSM) of evaluating VRC is introduced in this paper. The mathematic expression between a novel, readily available morphological parameter called the area difference ratio (ADR) and VRC was established. As it was difficult to calculate VRC from the complicated expression analytically, we recommend estimating it using a piecewise linear interpolation criterion. Also, since the effect of the PPG magnitude is eliminated in the calculation of ADR, precaliberation or normalization is dispensable in the NSM. Results of human experiments indicated that the NSM was computationally efficient, and the simulation experiments confirmed that the NSM was theoretically available for ABP.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahonen, J., Jokela, R., Uutela, K., Huiku, M., 2007. Surgical stress index reflects surgical stress in gynaecological laparoscopic day-case surgery. British Journal of Anaesthesia, 98(4):456-461.

[2]Alastruey, J., Parker, K.H., Peiro, J., Sherwin, S.J., 2009. Analysing the pattern of pulse waves in arterial networks: a time-domain study. Journal of Engineering Mathematics, 64(4):331-351.

[3]Allen, J., 2007. Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 28(3):R1-R39.

[4]Bhattacharya, J., Kanjilal, P.P., Muralidhar, V., 2001. Analysis and characterization of photo-plethysmographic signal. IEEE Transactions on Biomedical Engineering, 48(1):5-11.

[5]Eyal, S., Oz, O., Eliash, S., Wasserman, G., Akselrod, S., 1997. The diastolic decay constant in spontaneously hypertensive rats versus WKY rats as an indicator for vasomotor control. Journal of the Autonomic Nervous System, 64(1):24-32.

[6]Fogliardi, R., Burattini, R., Shroff, S.G., Campbell, K.B., 1996. Fit to diastolic arterial pressure by third-order lumped model yields unreliable estimates of arterial compliance. Medical Engineering & Physics, 18(3):225-233.

[7]Gnudi, G., 1998. New closed-form expressions for the estimation of arterial Windkessel compliance. Computers in Biology and Medicine, 28(3):207-223.

[8]Haffty, B.G., O'Hare, N.E., Singh, J.B., Spodick, D.H., 1983. Noninvasive tracking of peripheral resistance by ear densitography. Chest, 83(5):771-775.

[9]Hashimoto, J., Chonan, K., Aoki, Y., Nishimura, T., Ohkubo, T., Hozawa, A., Suzuki, M., Matsubara, M., Michimata, M., Araki, T., et al., 2002. Pulse wave velocity and the second derivative of the finger photoplethysmogram in treated hypertensive patients: their relationship and associating factors. Journal of Hypertension, 20(12):2415-2422.

[10]Huiku, M., Uutela, K., van Gils, M., Korhonen, I., Kymalainen, M., Merilainen, P., Paloheimo, M., Rantanen, M., Takala, P., Viertio-Oja, H., et al., 2007. Assessment of surgical stress during general anaesthesia. British Journal of Anaesthesia, 98(4):447-455.

[11]Karamanoglu, M., 1997. A system for analysis of arterial blood pressure waveforms in humans. Computers and Biomedical Research, 30(3):244-255.

[12]Li, B.N., Dong, M.C., Vai, M.I., 2010a. On an automatic delineator for arterial blood pressure waveforms. Biomedical Signal Processing and Control, 5(1):76-81.

[13]Li, B.N., Dong, M.C., Vai, M.I., 2010b. Modelling cardiovascular physiological signals using adaptive Hermite and wavelet basis functions. IET Signal Processing, 4(5):588-597.

[14]Lopez-Beltran, E.A., Blackshear, P.L., Finkelstein, S.M., Cohn, J.N., 1998. Non-invasive studies of peripheral vascular compliance using a non-occluding photoplethysmo-graphic method. Medical and Biological Engineering and Computing, 36(6):748-753.

[15]Lu, S., Zhao, H., Ju, K., Shin, K., Lee, M., Shelley, K., Chon, K.H., 2008. Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information? Journal of Clinical Monitoring and Computing, 22(1):23-29.

[16]Marcinkevics, Z., Kusnere, S., Aivars, J.I., Rubins, U., Zehtabi, A.H., 2009. The shape and dimensions of photoplethysmographic pulse waves: a measurement repeatability study. Acta Universitatics Latviensis Biology, 753:99-106.

[17]Millasseau, S.C., Guigui, F.G., Kelly, R.P., Prasad, K., Cockcroft, J.R., Ritter, J.M., Chowienczyk, P.J., 2000. Noninvasive assessment of the digital volume pulse: comparison with the peripheral pressure pulse. Hypertension, 36(6):952-956.

[18]Millasseau, S.C., Kelly, R.P., Ritter, J.M., Chowienczyk, P.J., 2003. The vascular impact of aging and vasoactive drugs: comparison of two digital volume pulse measurements. American Journal of Hypertension, 16(6):467-472.

[19]Miyai, N., Miyashita, K., Arita, M., Morioka, I., Kamiya, K., Takeda, S., 2001. Noninvasive assessment of arterial distensibility in adolescents using the second derivative of photoplethysmogram waveform. European Journal of Applied Physiology, 86(2):119-124.

[20]Randall, O.S., Vandenbos, G.C., Westerhof, N., Pot, F.O.M., 1984. Systemic compliance-does it play a role in the genesis of essential-hypertension. Cardiovascular Research, 18(8):455-462.

[21]Reisner, A., Shaltis, P.A., McCombie, D., Asada, H.H., 2008. Utility of the photoplethysmogram in circulatory monitoring. Anesthesiology, 108(5):950-958.

[22]Segers, P., Verdonck, P., Deryck, Y., Brimioulle, S., Naeije, R., Carlier, S., Stergiopulos, N., 1999. Pulse pressure method and the area method for the estimation of total arterial compliance in dogs: sensitivity to wave reflection intensity. Annals of Biomedical Engineering, 27(4):480-485.

[23]Seitsonen, E.R., Korhonen, I.K., van Gils, M.J., Huiku, M., Lotjonen, J.M., Korttila, K.T., Yli-Hankala, A.M., 2005. EEG spectral entropy, heart rate, photoplethysmography and motor responses to skin incision during sevoflurane anaesthesia. Acta Anaesthesiologica Scandinavica, 49(3):284-292.

[24]Seki, K., 1988. Noninvasive measurement of elastic properties in human finger arteries: clinical data comparing blood pressure and funduscopic examination. Heart and Vessels, 4(4):221-228.

[25]Shim, Y., Pasipoularides, A., Straley, C.A., Hampton, T.G., Soto, P.F., Owen, C.H., Davis, J.W., Glower, D.D., 1994. Arterial windkessel parameter estimation: a new time-domain method. Annals of Biomedical Engineering, 22(1):66-77.

[26]Shimazu, H., Yamakoshi, K.I., Kamiya, A., 1986. Noninvasive Measurement of the volume elastic-modulus in finger arteries using photoelectric plethysmography. IEEE Transactions on Biomedical Engineering, BME-33(8):795-798.

[27]Stergiopulos, N., Segers, P., Westerhof, N., 1999. Use of pulse pressure method for estimating total arterial compliance in vivo. American Journal of Physiology-Heart and Circulatory Physiology, 276(2):H424-H428.

[28]Takazawa, K., Tanaka, N., Fujita, M., Matsuoka, O., Saiki, T., Aikawa, M., Tamura, S., Ibukiyama, C., 1998. Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform. Hypertension, 32(2):365-370.

[29]Wang, J.J., O'Brien, A.B., Shrive, N.G., Parker, K.H., Tyberg, J.V., 2003. Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. American Journal of Physiology-Heart and Circulatory Physiology, 284(4):H1358-H1368.

[30]Westerhof, N., Lankhaar, J.W., Westerhof, B.E., 2009. The arterial Windkessel. Medical and Biological Engineering and Computing, 47(2):131-141.

[31]Yamakoshi, K., Kamiya, A., 1987. Noninvasive measurement of arterial blood pressure and elastic properties using photoelectric plethysmography technique. Medical Progress through Technology, 12(1-2):123-143.

[32]Yin, F.C., Liu, Z.R., 1989. Estimating arterial resistance and compliance during transient conditions in humans. American Journal of Physiology-Heart and Circulatory Physiology, 257(1):H190-H197.

[33]Zahedi, E., Chellappan, K., Ali, M.A.M., Singh, H., 2007. Analysis of the effect of ageing on rising edge characteristics of the photoplethysmogram using a modified Windkessel model. Cardiovascular Engineering, 7(4):172-181.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE