CLC number: TP79
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-12-29
Cited: 7
Clicked: 6757
Amirreza Shahtahmassebi, Zhou-lu Yu, Ke Wang, Hong-wei Xu, Jin-song Deng, Jia-dan Li, Rui-sen Luo, Jing Wu, Nathan Moore. Monitoring rapid urban expansion using a multi-temporal RGB-impervious surface model[J]. Journal of Zhejiang University Science A, 2012, 13(2): 146-158.
@article{title="Monitoring rapid urban expansion using a multi-temporal RGB-impervious surface model",
author="Amirreza Shahtahmassebi, Zhou-lu Yu, Ke Wang, Hong-wei Xu, Jin-song Deng, Jia-dan Li, Rui-sen Luo, Jing Wu, Nathan Moore",
journal="Journal of Zhejiang University Science A",
volume="13",
number="2",
pages="146-158",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1100034"
}
%0 Journal Article
%T Monitoring rapid urban expansion using a multi-temporal RGB-impervious surface model
%A Amirreza Shahtahmassebi
%A Zhou-lu Yu
%A Ke Wang
%A Hong-wei Xu
%A Jin-song Deng
%A Jia-dan Li
%A Rui-sen Luo
%A Jing Wu
%A Nathan Moore
%J Journal of Zhejiang University SCIENCE A
%V 13
%N 2
%P 146-158
%@ 1673-565X
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1100034
TY - JOUR
T1 - Monitoring rapid urban expansion using a multi-temporal RGB-impervious surface model
A1 - Amirreza Shahtahmassebi
A1 - Zhou-lu Yu
A1 - Ke Wang
A1 - Hong-wei Xu
A1 - Jin-song Deng
A1 - Jia-dan Li
A1 - Rui-sen Luo
A1 - Jing Wu
A1 - Nathan Moore
J0 - Journal of Zhejiang University Science A
VL - 13
IS - 2
SP - 146
EP - 158
%@ 1673-565X
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1100034
Abstract: In this paper, we developed a novel method of combining remote sensing tools at the sub-pixel level for accurate identification of impervious surface time series changes. We examined the use of the impervious surface model (RGB-IS)%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>red-green-blue impervious surface model (RGB-IS) in detecting time series internal modification of urban regions by integrating landsat data collected over four different periods between 1987 and 2009 (i.e., 1987, 2000, 2002, and 2009). The performance of this approach was compared with two conventional methods, namely standard RGB-normalized difference vegetation index (NDVI) and post-classification technique. In contrast to conventional techniques, RGB-IS could monitor between-class changes, within-class changes, and location of these modifications. The proposed method was independent of seasonal changes and was also able to serve as a useful alternative for quick mapping growth hotspots and updating transportation corridor map. The results also showed that Cixi County, Zhejiang Province, China experienced tremendous impervious surface changes, especially along the corridors of newly constructed highways and around urban areas over the past 22 years.
[1]Arnold, C.L., Gibbons, C.J., 1996. Impervious surface coverage: the emergence of a key environmental indicator. Journal of the American Planning Association, 62(2):243-258.
[2]Cibula, W.G., Zetka, E.F., Rickman, D.L., 1992. Response of thematic bands to plant water stress. International Journal of Remote Sensing, 13(10):1869-1880.
[3]Chavez, P.S., 1996. Image-based atmospheric corrections— revisited and improved. Photogrammetric Engineering and Remote Sensing, 62(9):1025-1036.
[4]Chormanski, J., de Voorde, T.V., de Roeck, T., Batelaan, O., Canters, F., 2008. Improving distributed runoff prediction in urbanized catchments with remote sensing based estimates of impervious surface cover. Sensors, 8(2):910-932.
[5]Deng, J.S., Wang, K., Hong, Y., Qi, J.G., 2009. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and Urban Planning, 94(3-4):187-198.
[6]Ding, H., Wang, R.C., Wu, J.P., Zhou, B., Shi, Z., Ding, L.X., 2007. Quantifying land use change in Zhejiang coastal region, China using multi-temporal Landsat TM/ETM+ images. Pedosphere, 17(6):712-720.
[7]Dougherty, M., Dymond, R.L., Goetz, S.J., Jzntz, C.A., Goulet, N., 2004. Evaluation of impervious surface estimates in a rapidly urbanizing watershed. Photogrammetric Engineering and Remote Sensing, 27(11):1275-1284.
[8]Esch, T., Himmler, V., Schorcht, G., Thiel, M., Wehrmann, T., Bachofer, F., Conrad, C., 2009. Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data. Remote Sensing of Environment, 113(8):1678-1690.
[9]Franke, J., Roberts, D.A., Halligan, K., Menz, G., 2009. Hierarchical multiple endmember spectral mixture analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sensing of Environment, 113(8):1712-1723.
[10]Gao, B.C., 1996. NDWI–a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3):257-266.
[11]Hu, X., Weng, Q., 2009. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sensing of Environment, 113(10):2089-2102.
[12]Jensen, J.R., 2007. Introductory Digital Image Processing. Science Press and Pearson Education Asia Ltd., Beijing, China, p.127-173, 220-221.
[13]Kawamura, M., Jayanmanna, S., Tsujiko, Y., 1997. Quantitative evaluation of urbanization in developing countries using satellite data. Journal of Environmental System and Engineering, 580(5):45-54.
[14]Klein, R., 1979. Urbanization and stream quality impairment. Water Resources Bulletin, 15(4):948-963.
[15]Lee, S., Lathrop, R.G., 2006. Subpixel analysis of Landsat ETM+ using self-organizing map (SOM) neural networks for urban land cover characterization. IEEE Transactions on Geoscience and Remote Sensing, 44(6):1642-1654.
[16]Li, C.L., Du, J.K., Su, Y.P., Li, Q., Chen, L., 2010. Extraction of Impervious Surface Based on Multi-Source Satellite Data of Qinhuai River Basin from 1979–2009. 18th International Conference on Geoinformatics, Beijing, China.
[17]Lizarazo, I., Barros, J., 2010. Fuzzy image segmentation for urban land-cover classification. Photogrammetric Engineering and Remote Sensing, 76(2):151-162.
[18]Long, H.L., Tang, G.P., Li, X.B., Heilig, G.K., 2007. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. Journal of Environmental Management, 83(3):351-364.
[19]Lu, D., Weng, Q., 2005. Urban classification using full spectral information of Landsat ETM+ imagery in Marion County, Indiana. Photogrammetric Engineering and Remote Sensing, 71(11):1275-1284.
[20]Lu, D., Weng, Q., 2006. Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA. Remote Sensing of Environment, 104(2):157-167.
[21]Lu, D., Weng, Q., 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5):823-870.
[22]Lu, D., Weng, Q., Li, G., 2006. Residential population estimation using a remote sensing derived impervious surface approach. International Journal of Remote Sensing, 27(16):3553-3570.
[23]Lu, S.L., Shen, X.H., Zou, L.J., 2006. Land cover change in Ningbo and its surrounding area of Zhejiang Province, 1987~2000. Journal of Zhejiang University-SCIENCE A, 7(4):633-640.
[24]Luo, L., Mountrakis, G., 2010. Integrating intermediate inputs from partially classified images within a hybrid classification framework: An impervious surface estimation example. Remote Sensing of Environment, 114(6):1220-1229.
[25]Mountrakis, G., Luo, L., 2011. Enhancing and replacing spectral information with intermediate structural inputs: A case study on impervious surface detection. Remote Sensing of Environment, 115(5):1162-1170.
[26]Mountrakis, G., Watts, R., Luo, L., Wang, J., 2009. Developing collaborative classifiers using an expert-based model. Photogrammetric Engineering and Remote Sensing, 75(7):831-844.
[27]Pal, M., Mather, M.P., 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86(4):554-565.
[28]Powell, R.L., Roberts, D.A., Dennison, P.E., Hess, L.L., 2007. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sensing of Environment, 106(2):253-267.
[29]Powell, S.L., Cohen, W.B., Yang, Z., Pierce, J.D., Alberti, M., 2008. Quantification of impervious surface in Snohomish water resource inventory area of western Washington from 1972–2006. Remote Sensing of Environment, 112(4):1895-1908.
[30]Ramadan, E., Feng, X.Z., Cheng, Z., 2004. Satellite remote sensing for urban growth assessment in Shaoxing City, Zhejiang Province. Journal of Zhejiang University SCIENCE, 5(9):1095-1101.
[31]Rashed, T., 2008. Remote sensing of within-class in urban neighborhood structures. Computers, Environment and Urban Systems, 32(5):343-354.
[32]Rashed, T., Weeks, J., Roberts, D.A., Rogan, J., Powell, P., 2003. Measuring the physical composition of urban morphology using multiple endmember spectral mixture models. Photogrammetric Engineering and Remote Sensing, 69(9):1011-1020.
[33]Rashed, T., Weeks, J.R., Stow, D., Fugate, D., 2005. Measuring temporal compositions of urban morphology through spectral mixture analysis: toward a soft approach to change analysis in crowded cities. International Journal of Remote Sensing, 26(4):699-718.
[34]Roberts, D.A., Gardner, M., Church, R., Ustin, S., Scheer, G., Green, R.O., 1998. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sensing of Environment, 65(3):267-279.
[35]Roberts, D., Halligan, K., Dennison, P., 2007. Vipers Tools User Manual. Available from http://www.vipertools. org/?q=content/envi-plugin-0 [Accessed on Apr. 21, 2011].
[36]Sader, S.A., Winne, J.C., 1992. RGB-NDVI colour composites for visualizing forest change dynamics. International Journal of Remote Sensing, 13(16):3055-3067.
[37]Sader, S.A., Hayes, D.J., Hepinstall, J.A., Coan, M., Soza, C., 2001. Forest change monitoring of a remote biosphere reserve. International Journal of Remote Sensing, 22(10):1937-1950.
[38]Sader, S.A., Bertrand, M., Wilson, E.H., 2003. Satellite change detection of forest harvest pattern on an industrial forest landscape. Forest Science, 49(3):341-353.
[39]Setiawan, H., Mathieu, R., Thompson-Fawcett, M., 2006. Assessing the applicability of the V-I-S model to map urban land use in the developing world: Case study of Yogyakarta, Indonesia. Computers, Environment and Urban Systems, 30(4):503-522.
[40]Small, C., 2005. A global analysis of urban reflectance. International Journal of Remote Sensing, 26(4):661-681.
[41]Song, C., Woodcock, C.E., Seto, K.C., Lenney, M.P., Macomber, S.A., 2001. Classification and change detection using Landsat TM data: when and how to correct atmospheric effects. Remote Sensing of Environment, 75(2):230-244.
[42]Weng, Q., 2007. Remote Sensing of Impervious Surfaces. CRC Press, Boca Raton, Florida.
[43]Yang, X., 2006. Estimating landscape imperviousness index from satellite imagery. IEEE Geosceince and Remote Sensing Letters, 3(1):6-9.
[44]Yang, X., Liu, Z., 2005. Use of satellite-derived landscape imperviousness index to characterize urban spatial growth. Computers, Environment and Urban Systems, 29(5):524-540.
[45]Yang, L., Huang, C., Homer, C.G., Wylie, B.K., Coan, M.J., 2003a. An approach for mapping large-area impervious surfaces: Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery. Canadian Journal of Remote Sensing, 29(2):230-240.
[46]Yang, L., Xian, G., Kalver, J.M., Deal, B., 2003b. Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data. Photogrammetric Engineering and Remote Sensing, 69(9):1003-1010.
Open peer comments: Debate/Discuss/Question/Opinion
<1>