Full Text:   <4662>

CLC number: O348; R783.1; TQ32

On-line Access: 2013-01-02

Received: 2012-10-18

Revision Accepted: 2012-11-28

Crosschecked: 2012-12-12

Cited: 5

Clicked: 7266

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.1 P.1-10


Application of digital image correlation to full-field measurement of shrinkage strain of dental composites

Author(s):  Jian-ying Li, Andrew Lau, Alex S. L. Fok

Affiliation(s):  . Minnesota Dental Research Centre for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA

Corresponding email(s):   lixx0774@umn.edu

Key Words:  Image correlation, Dental composite, Polymerization shrinkage, Depth of cure

Share this article to: More |Next Article >>>

Jian-ying Li, Andrew Lau, Alex S. L. Fok. Application of digital image correlation to full-field measurement of shrinkage strain of dental composites[J]. Journal of Zhejiang University Science A, 2013, 14(1): 1-10.

@article{title="Application of digital image correlation to full-field measurement of shrinkage strain of dental composites",
author="Jian-ying Li, Andrew Lau, Alex S. L. Fok",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Application of digital image correlation to full-field measurement of shrinkage strain of dental composites
%A Jian-ying Li
%A Andrew Lau
%A Alex S. L. Fok
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 1
%P 1-10
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1200274

T1 - Application of digital image correlation to full-field measurement of shrinkage strain of dental composites
A1 - Jian-ying Li
A1 - Andrew Lau
A1 - Alex S. L. Fok
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 1
SP - 1
EP - 10
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1200274

Objectives: polymerization shrinkage of dental composites remains a major concern in restorative dentistry because it can lead to micro-cracking of the tooth and debonding at the tooth-restoration interface. The aim of this study was to measure the full-field polymerization shrinkage of dental composites using the optical digital image correlation (DIC) method and to evaluate how the measurement is influenced by the factors in experiment setup and image analysis. Methods: Four commercial dental composites, Premise Dentine, Z100, Z250 and Tetric EvoCeram, were tested. Composite was first placed into a slot mould to form a bar specimen with rectangular-section of 4 mm×2 mm, followed by the surface painting to create irregular speckles. Curing was then applied at one end of the specimen while the other part were covered against curing light for simulating the clinical curing condition of composite in dental cavity. The painted surface was recorded by a charge-coupled device (CCD) camera before and after curing. Subsequently, the volumetric shrinkage of the specimen was calculated with specialist DIC software based on image cross correlation. In addition, a few factors that may influence the measuring accuracy, including the subset window size, speckle size, illumination light and specimen length, were also evaluated. Results: The volumetric shrinkage of the specimen generally decreases with increasing distance from the irradiated surface with a conspicuous exception being the composite Premise Dentine as its maximum shrinkage occurred at a subsurface distance of about 1 mm instead of the irradiated surface. Z100 had the greatest maximum shrinkage strain, followed by Z250, Tetric EvoCeram and then Premise Dentine. Larger subset window size made the shrinkage strain contour smoother. But the cost was that some details in the heterogeneity of the material were lost. Very small subset window size resulted in a lot of noise in the data, making it difficult to discern the general pattern in the strain distribution. Speckle size did not seem to have obvious effect on the volumetric shrinkage strain along specimen length; however, larger speckles resulted in higher level of noise or heterogeneity in the shrinkage distribution. Compared with bright illumination, dimmer lighting produced larger standard deviations in the measured shrinkage, indicating a higher level of noise. The longer the specimen, the greater was the rate of reduction with distance from the irradiated surface, especially for the longitudinal strain. Significance: The image correlation method is capable of producing full-field polymerization shrinkage of dental composites. The accuracy of the measurements relies on selection of optimal parameters in experimental setup and DIC analysis.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Arenas, G., Noriega, S., Vallo, C., Duchowicz, R., 2007. Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer. Optics Communications, 271(2):581-586. 

[2] Chen, Y.C., Ferracane, J.L., Prahl, S.A., 2005. A pilot study of a simple photon migration model for predicting depth of cure in dental composite. Dental Materials, 21(11):1075-1086. 

[3] de Gee, A.J., Davidson, C.L., Smith, A., 1981. A modified dilatometer for continuous recording of volumetric polymerization shrinkage of composite restorative materials. Journal of Dentistry, 9(1):36-42. 

[4] Demoli, N., Knezevic, A., Tarle, Z., Meniga, A., Sutalo, J., Pichler, G., 2004. Digital interferometry for measuring of the resin composite thickness variation during blue light polymerization. Optics Communications, 231(1-6):45-51. 

[5] Fano, V., Ortalli, I., Pizzi, S., Bonanini, M., 1997. Polymerization shrinkage of microfilled composites determined by laser beam scanning. Biomaterials, 18(6):467-470. 

[6] Ferracane, J.L., Berge, H.X., Condon, J.R., 1998. In vitro aging of dental composites in water—Effect of degree of conversion, filler volume, and filler/matrix coupling. Journal of Biomedical Materials Research, 42(3):465-472. 

[7] Fogleman, E.A., Kelly, M.T., Grubbs, W.T., 2002. Laser interferometric method for measuring linear polymerization shrinkage in light cured dental restoratives. Dental Materials, 18(4):324-330. 

[8] Heise, M., Krger, U., Rckert, R., Pfitzman, R., Neuhaus, P., Settmacher, U., 2003. Correlation of intimal hyperplasia development and shear stress distribution at the distal end-side-anastomosis, in vitro study using particle image velocimetry. European Journal of Vascular and Endovascular Surgery, 26(4):357-366. 

[9] Hbsch, P.F., Middleton, J., Feilzer, A.J., 1999. Identification of the constitutive behaviour of dental composite cements during curing. Computer Methods in Biomechanics and Biomedical Engineering, 2(4):245-256. 

[10] Kang, J., Ososkov, Y., Embury, J.D., Wilkinson, D.S., 2007. Digital image correlation studies for microscopic strain distribution and damage in dual phase steels. Scripta Materialia, 56(11):999-1002. 

[11] Lee, I.B., Cho, B.H., Son, H.H., Um, C.M., Lim, B.S., 2006. The effect of consistency, specimen geometry and adhesion on the axial polymerization shrinkage measurement of light cured composites. Dental Materials, 22(11):1071-1079. 

[12] Li, J.Y., Fok, A.S.L., Satterthwaite, J., Watts, D.C., 2009. Measurement of the full-field polymerization shrinkage and depth of cure of dental composites using digital image correlation. Dental Materials, 25(5):582-588. 

[13] Li, J.Y., Li, H., Fok, A.S.L., Watts, D.C., 2009. Multiple correlations of material parameters of light-cured dental composites. Dental Materials, 25(7):829-836. 

[14] Obici, A.C., Sinhoreti, M.A.C., Frollini, E., Sobrinho, L.C., de Goes, M.F., Henriques, G.E.P., 2006. Monomer conversion at different dental composite depths using six light-curing methods. Polymer Testing, 25(3):282-288. 

[15] Palin, W.M., Fleming, G.J.P., Nathwani, H., Burke, F.J.T., Randall, R.C., 2005. In vitro cuspal deflection and microleakage of maxillary premolars restored with novel low-shrink dental composites. Dental Materials, 21(4):324-335. 

[16] Sakaguchi, R.L., Sasik, C.T., Bunczak, M.A., Douglas, W.H., 1991. Strain gauge method for measuring polymerization contraction of composite restoratives. Journal of Dentistry, 19(5):312-316. 

[17] Sakaguchi, R.L., Versluis, A., Douglas, W.H., 1997. Analysis of strain gage method for measurement of post-gel shrinkage in resin composites. Dental Materials: Official Publication of the Academy of Dental Materials, 13(4):233-239. 

[18] Sakaguchi, R.L., Wiltbank, B.D., Shah, N.C., 2004. Critical configuration analysis of four methods for measuring polymerization shrinkage strain of composites. Dental Materials, 20(4):388-396. 

[19] Sharp, L.J., Choi, I.B., Lee, T.E., Sy, A., Suh, B.I., 2003. Volumetric shrinkage of composites using video-imaging. Journal of Dentistry, 31(2):97-103. 

[20] Silva, F.F., Mendes, L.C., Ferreira, M., Benzi, M.R., 2007. Degree of conversion versus the depth of polymerization of an organically modified ceramic dental restoration composite by Fourier transform infrared spectroscopy. Journal of Applied Polymer Science, 104(1):325-330. 

[21] Sun, J., Lin-Gibson, S., 2008. X-ray microcomputed tomography for measuring polymerization shrinkage of polymeric dental composites. Dental Materials, 24(2):228-234. 

[22] Uhl, A., Mills, R.W., Vowles, R.W., Jandt, K.D., 2002. Knoop hardness depth profiles and compressive strength of selected dental composites polymerized with halogen and LED light curing technologies. Journal of Biomedical Materials Research, 63(6):729-738. 

[23] Versluis, A., Tantbirojn, D., Douglas, W.H., 2004. Distribution of transient properties during polymerization of a light-initiated restorative composite. Dental Materials, 20(6):543-553. 

[24] Watts, D.C., Cash, A.J., 1991. Determination of polymerization shrinkage kinetics in visible-light-cured materials: methods development. Dental Materials: Official Publication of the Academy of Dental Materials, 7(4):281-287. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE