Full Text:   <8840>

Summary:  <3038>

CLC number: TM911.45

On-line Access: 2014-11-04

Received: 2014-09-17

Revision Accepted: 2014-10-19

Crosschecked: 2014-10-24

Cited: 13

Clicked: 7818

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.11 P.841-861


Microbial fuel cells for energy production from wastewaters: the way toward practical application*

Author(s):  Wei-feng Liu, Shao-an Cheng

Affiliation(s):  . State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   shaoancheng@zju.edu.cn

Key Words:  Microbial fuel cell (MFC), Wastewater treatment, Sustainability, Scale up, Chemical production

Share this article to: More |Next Article >>>

Wei-feng Liu, Shao-an Cheng. Microbial fuel cells for energy production from wastewaters: the way toward practical application[J]. Journal of Zhejiang University Science A, 2014, 15(11): 841-861.

@article{title="Microbial fuel cells for energy production from wastewaters: the way toward practical application",
author="Wei-feng Liu, Shao-an Cheng",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Microbial fuel cells for energy production from wastewaters: the way toward practical application
%A Wei-feng Liu
%A Shao-an Cheng
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 11
%P 841-861
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400277

T1 - Microbial fuel cells for energy production from wastewaters: the way toward practical application
A1 - Wei-feng Liu
A1 - Shao-an Cheng
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 11
SP - 841
EP - 861
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400277

Much energy is stored in wastewaters. How to efficiently capture this energy is of great significance for meeting the world’s energy needs, reducing wastewater handling costs and increasing the sustainability of wastewater treatment. The microbial fuel cell (MFC) is a recently developed biotechnology for electrical energy recovery from the organic pollutants in wastewaters. MFCs hold great promise for sustainable wastewater treatment. However, at present there is still much research needed before the MFC technique can be practically applied in the real world. In this review, we analyze the opportunities and key challenges for MFCs to achieve sustainability in wastewater treatment. We especially discuss the problems and challenges for scaling up the MFC systems; this is the most critical issue for realizing the practical implementation of this technique. In order to achieve sustainability, MFCs may also be combined with other techniques to yield high effluent quality or to recover more commercial value (i.e., by producing energy-rich or high value chemicals) from wastewaters. However, research in this area is still on-going and many problems need to be settled before real-world application. Advances are required in respect of efficiency, economic feasibility, system stability, and reliability.



Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Article Content


[1] Aelterman, P., Rabaey, K., Pham, H.T., 2006. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental Science & Technology, 40(10):3388-3394. 

[2] Ahmed, J.K.S., 2011. Effect of cathodic biofilm on the performance of air-cathode single chamber microbial fuel cells. Bulletin of the Korean Chemical Society, 32(10):3726-3729. 

[3] Ahn, Y., Zhang, F., Logan, B.E., 2014. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes. Journal of Power Sources, 247:655-659. 

[4] An, J., Jeon, H., Lee, J., 2011. Bifunctional silver nanoparticle cathode in microbial fuel cells for microbial growth inhibition with comparable oxygen reduction reaction activity. Environmental Science & Technology, 45(12):5441-5446. 

[5] Aulenta, F., Tocca, L., Verdini, R., 2011. Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor: effect of cathode potential on rate, selectivity, and electron transfer mechanisms. Environmental Science & Technology, 45(19):8444-8451. 

[6] Bond, D.R., Lovley, D.R., 2003. Electricity production by geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 69(3):1548-1555. 

[7] Bond, D.R., Lovley, D.R., 2005. Evidence for involvement of an electron shuttle in electricity generation by geothrix fermentans. Applied and Environmental Microbiology, 71(4):2186-2189. 

[8] Borole, A.P., Reguera, G., Ringeisen, B., 2011. Electroactive biofilms: current status and future research needs. Energy & Environmental Science, 4(12):4813-4834. 

[9] Cai, T., Park, S.Y., Li, Y., 2013. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19:360-369. 

[10] Call, D., Logan, B.E., 2008. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environmental Science & Technology, 42(9):3401-3406. 

[11] Cao, X., Huang, X., Liang, P., 2009. A new method for water desalination using microbial desalination cells. Environmental Science & Technology, 43(18):7148-7152. 

[12] Cha, J., Choi, S., Yu, H., 2010. Directly applicable microbial fuel cells in aeration tank for wastewater treatment. Bioelectrochemistry, 78(1):72-79. 

[13] Chen, G.W., Choi, S.J., Lee, T.H., 2008. Application of biocathode in microbial fuel cells: cell performance and microbial community. Applied Microbiology and Biotechnology, 79(3):379-388. 

[14] Chen, X., Xia, X., Liang, P., 2011. Stacked microbial desalination cells to enhance water desalination efficiency. Environmental Science & Technology, 45(6):2465-2470. 

[15] Cheng, S., Logan, B.E., 2011. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresource Technology, 102(6):4468-4473. 

[16] Cheng, S., Liu, H., Logan, B.E., 2006. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells. Environmental Science & Technology, 40(1):364-369. 

[17] Cheng, S., Xing, D., Call, D.F., 2009. Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science & Technology, 43(10):3953-3958. 

[18] Cheng, S., Liu, W., Guo, J., 2014. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells. Biosensors and Bioelectronics, 56:264-270. 

[19] Cheng, S., Ye, Y., Ding, W., 2014. Enhancing power generation of scale-up microbial fuel cells by optimizing the leading-out terminal of anode. Journal of Power Sources, 248:931-938. 

[20] Chung, K., Fujiki, I., Okabe, S., 2011. Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell. Bioresource Technology, 102(1):355-360. 

[21] Clauwaert, P., Verstraete, W., 2009. Methanogenesis in membraneless microbial electrolysis cells. Applied Microbiology and Biotechnology, 82(5):829-836. 

[22] Clauwaert, P., Aelterman, P., Pham, T., 2008. Minimizing losses in bio-electrochemical systems: the road to applications. Applied Microbiology and Biotechnology, 79(6):901-913. 

[23] Clauwaert, P., Tolêdo, R., van der Ha, R.C., 2008. Combining biocatalyzed electrolysis with anaerobic digestion. Water Science & Technology, 57(4):575-579. 

[24] Clauwaert, P., Mulenga, S., Aelterman, P., 2009. Litre-scale microbial fuel cells operated in a complete loop. Applied Microbiology and Biotechnology, 83(2):241-247. 

[25] Cusick, R.D., Kiely, P.D., Logan, B.E., 2010. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. International Journal of Hydrogen Energy, 35(17):8855-8861. 

[26] Dekker, A., Heijne, A.T., Saakes, M., 2009. Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environmental Science & Technology, 43(23):9038-9042. 

[27] Dewan, A., Donovan, C., Heo, D., 2010. Evaluating the performance of microbial fuel cells powering electronic devices. Journal of Power Sources, 195(1):90-96. 

[28] Donovan, C., Dewan, A., Peng, H., 2011. Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell. Journal of Power Sources, 196(3):1171-1177. 

[29] Du, Z., Li, H., Gu, T., 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5):464-482. 

[30] Durruty, I., Bonanni, P.S., Gonzlez, J.F., 2012. Evaluation of potato-processing wastewater treatment in a microbial fuel cell. Bioresource Technology, 105:81-87. 

[31] Fan, Y., Han, S.K., Liu, H., 2012. Improved performance of CEA microbial fuel cells with increased reactor size. Energy & Environmental Science, 5(8):8273-8280. 

[32] Feng, Y., Wang, X., Logan, B.E., 2008. Brewery wastewater treatment using air-cathode microbial fuel cells. Applied Microbiology and Biotechnology, 78(5):873-880. 

[33] Flynn, J.M., Ross, D.E., Hunt, K.A., 2010. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. mBio, 1(5):00190-00110. 

[34] Foley, J.M., Rozendal, R.A., Hertle, C.K., 2010. Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environmental Science & Technology, 44(9):3629-3637. 

[35] Fornero, J.J., Rosenbaum, M., Angenent, L.T., 2010. Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells. Electroanalysis, 22(7-8):832-843. 

[36] Freguia, S., Teh, E.H., Boon, N., 2010. Microbial fuel cells operating on mixed fatty acids. Bioresource Technology, 101(4):1233-1238. 

[37] Ge, Z., Ping, Q., He, Z., 2013. Hollow-fiber membrane bioelectrochemical reactor for domestic wastewater treatment. Journal of Chemical Technology & Biotechnology, 88(8):1584-1590. 

[38] Hamelers, H.M., Ter Heijne, A., Sleutels, T.J.A., 2010. New applications and performance of bioelectrochemical systems. Applied Microbiology and Biotechnology, 85(6):1673-1685. 

[39] Harnisch, F., Schroder, U., 2010. From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chemical Society Reviews, 39(11):4433-4448. 

[40] Harnisch, F., Sievers, G., Schrder, U., 2009. Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions. Applied Catalysis B: Environmental, 89(3-4):455-458. 

[41] He, Z., 2013. Microbial fuel cells: now let us talk about energy. Environmental Science & Technology, 47(1):332-333. 

[42] Heidrich, E.S., Curtis, T.P., Dolfing, J., 2011. Determination of the internal chemical energy of wastewater. Environmental Science & Technology, 45(2):827-832. 

[43] Ieropoulos, I., Greenman, J., Melhuish, C., 2008. Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. International Journal of Energy Research, 32(13):1228-1240. 

[44] Jacobson, K.S., Drew, D.M., He, Z., 2011. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresource Technology, 102(1):376-380. 

[45] Kalathil, S., Lee, J., Cho, M.H., 2011. Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnology, 29(1):32-37. 

[46] Kim, D., An, J., Kim, B., 2012. Scaling-up microbial fuel cells: configuration and potential drop phenomenon at series connection of unit cells in shared anolyte. ChemSusChem, 5(6):1086-1091. 

[47] Kim, Y., Hatzell, M.C., Hutchinson, A.J., 2011. Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal. Energy & Environmental Science, 4(11):4662-4667. 

[48] Larrosa-Guerrero, A., Scott, K., Head, I.M., 2010. Effect of temperature on the performance of microbial fuel cells. Fuel, 89(12):3985-3994. 

[49] Ledezma, P., Greenman, J., Ieropoulos, I., 2013. MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions. Bioresource Technology, 134:158-165. 

[50] Lee, H.S., Rittmann, B.E., 2010. Characterization of energy losses in an upflow single-chamber microbial electrolysis cell. International Journal of Hydrogen Energy, 35(3):920-927. 

[51] Lefebvre, O., Uzabiaga, A., Chang, I., 2011. Microbial fuel cells for energy self-sufficient domestic wastewater treatment—a review and discussion from energetic consideration. Applied Microbiology and Biotechnology, 89(2):259-270. 

[52] Levine, A.D., Asano, T., 2004. Peer reviewed: recovering sustainable water from wastewater. Environmental Science & Technology, 38(11):201A-208A. 

[53] Li, C., Fang, H.H.P., 2007. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology, 37(1):1-39. 

[54] Li, W.W., Yu, H.Q., He, Z., 2014. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy & Environmental Science, 7(3):911-924. 

[55] Li, Z., Zhang, X., Lei, L., 2008. Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell. Process Biochemistry, 43(12):1352-1358. 

[56] Liu, H., Logan, B.E., 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38(14):4040-4046. 

[57] Liu, H., Cheng, S., Logan, B.E., 2005. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology, 39(14):5488-5493. 

[58] Liu, H., Grot, S., Logan, B.E., 2005. Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology, 39(11):4317-4320. 

[59] Liu, H., Cheng, S., Huang, L., 2008. Scale-up of membrane-free single-chamber microbial fuel cells. Journal of Power Sources, 179(1):274-279. 

[60] Liu, L., Li, F.B., Feng, C.H., 2009. Microbial fuel cell with an azo-dye-feeding cathode. Applied Microbiology and Biotechnology, 85(1):175-183. 

[61] Logan, B.E., 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7(5):375-381. 

[62] Logan, B.E., 2010. Scaling up microbial fuel cells and other bioelectrochemical systems. Applied Microbiology and Biotechnology, 85(6):1665-1671. 

[63] Logan, B.E., Cheng, S., Watson, V., 2007. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology, 41(9):3341-3346. 

[64] Lovley, D.R., 2011. Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environmental Microbiology Reports, 3(1):27-35. 

[65] McCarty, P.L., Bae, J., Kim, J., 2011. Domestic wastewater treatment as a net energy producer—can this be achieved?. Environmental Science & Technology, 45(17):7100-7106. 

[66] Min, B., Logan, B.E., 2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science & Technology, 38(21):5809-5814. 

[67] Min, B., Cheng, S., Logan, B.E., 2005. Electricity generation using membrane and salt bridge microbial fuel cells. Water Research, 39(9):1675-1686. 

[68] Min, B., Kim, J., Oh, S., 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Research, 39(20):4961-4968. 

[69] Mu, Y., Rabaey, K., Rozendal, R.A., 2009. Decolorization of azo dyes in bioelectrochemical systems. Environmental Science & Technology, 43(13):5137-5143. 

[70] Muga, H.E., Mihelcic, J.R., 2008. Sustainability of wastewater treatment technologies. Journal of Environmental Management, 88(3):437-447. 

[71] Nevin, K.P., Woodard, T.L., Franks, A.E., 2010. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio, 1(2):103-110. 

[72] Nowak, O.K.S., Fimml, C., 2011. Examples of energy self-sufficient municipal nutrient removal plants. Water Science & Technology, 64(1):1-6. 

[73] Oh, S.T., Kim, J.R., Premier, G.C., 2010. Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnology Advances, 28(6):871-881. 

[74] Pant, D., van Bogaert, G., Diels, L., 2010. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101(6):1533-1543. 

[75] Pant, D., Singh, A., van Bogaert, G., 2012. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Advances, 2(4):1248-1263. 

[76] Park, J.D., Ren, Z., 2012. High efficiency energy harvesting from microbial fuel cells using a synchronous boost converter. Journal of Power Sources, 208(0):322-327. 

[77] Park, J.D., Ren, Z., 2012. Hysteresis controller based maximum power point tracking energy harvesting system for microbial fuel cells. Journal of Power Sources, 205:151-156. 

[78] Pham, T.H., Rabaey, K., Aelterman, P., 2006. Microbial fuel cells in relation to conventional anaerobic digestion technology. Engineering in Life Sciences, 6(3):285-292. 

[79] Qiao, Y., Li, C.M., Bao, S.J., 2008. Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chemical Communications, 11:1290-1292. 

[80] Rabaey, K., Verstraete, W., 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 23(6):291-298. 

[81] Rabaey, K., Rozendal, R.A., 2010. Microbial electrosynthesis—revisiting the electrical route for microbial production. Nature Reviews Microbiology, 8(10):706-716. 

[82] Rabaey, K., van de Sompel, K., Maignien, L., 2006. Microbial fuel cells for sulfide removal. Environmental Science & Technology, 40(17):5218-5224. 

[83] Rabaey, K., Btzer, S., Brown, S., 2010. High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environmental Science & Technology, 44(11):4315-4321. 

[84] Ringeisen, B.R., Henderson, E., Wu, P.K., 2006. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environmental Science & Technology, 40(8):2629-2634. 

[85] Rismani-Yazdi, H., Carver, S.M., Christy, A.D., 2008. Cathodic limitations in microbial fuel cells: an overview. Journal of Power Sources, 180(2):683-694. 

[86] Rittmann, B.E., 2008. Opportunities for renewable bioenergy using microorganisms. Biotechnology and Bioengineering, 100(2):203-212. 

[87] Rozendal, R.A., Hamelers, H.V.M., Euverink, G.J.W., 2006. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. International Journal of Hydrogen Energy, 31(12):1632-1640. 

[88] Rozendal, R.A., Hamelers, H.V.M., Molenkamp, R.J., 2007. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Research, 41(9):1984-1994. 

[89] Rozendal, R.A., Hamelers, H.V.M., Rabaey, K., 2008. Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology, 26(8):450-459. 

[90] Rozendal, R.A., Jeremiasse, A.W., Hamelers, H.V.M., 2008. Hydrogen production with a microbial biocathode. Environmental Science & Technology, 42(2):629-634. 

[91] Rozendal, R.A., Leone, E., Keller, J., 2009. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochemistry Communications, 11(9):1752-1755. 

[92] Santoro, C., Lei, Y., Li, B., 2012. Power generation from wastewater using single chamber microbial fuel cells (MFCs) with platinum-free cathodes and pre-colonized anodes. Biochemical Engineering Journal, 62:8-16. 

[93] Santoro, C., Stadlhofer, A., Hacker, V., 2013. Activated carbon nanofibers (ACNF) as cathode for single chamber microbial fuel cells (SCMFCs). Journal of Power Sources, 243:499-507. 

[94] Schmidt, T.J., Paulus, U.A., Gasteiger, H.A., 2001. The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. Journal of Electroanalytical Chemistry, 508(1-2):41-47. 

[95] Selembo, P.A., Merrill, M.D., Logan, B.E., 2009. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. Journal of Power Sources, 190(2):271-278. 

[96] Sharma, Y., Li, B., 2010. Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC). International Journal of Hydrogen Energy, 35(8):3789-3797. 

[97] Steinbusch, K.J.J., Hamelers, H.V.M., Schaap, J.D., 2010. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environmental Science & Technology, 44(1):513-517. 

[98] Tartakovsky, B., Manuel, M.F., Wang, H., 2009. High rate membrane-less microbial electrolysis cell for continuous hydrogen production. International Journal of Hydrogen Energy, 34(2):672-677. 

[99] Timmers, R., Strik, D.B.T.B., Hamelers, H.M., 2010. Long-term performance of a plant microbial fuel cell with Spartina anglicaApplied Microbiology and Biotechnology, 86(3):973-981. 

[100] Walker, A.L., Walker, C.W., 2006. Biological fuel cell and an application as a reserve power source. Journal of Power Sources, 160(1):123-129. 

[101] Wang, A., Sun, D., Cao, G., 2011. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresource Technology, 102(5):4137-4143. 

[102] Wang, B., Han, J.I., 2009. A single chamber stackable microbial fuel cell with air cathode. Biotechnology Letters, 31(3):387-393. 

[103] Wang, Y.K., Sheng, G.P., Shi, B.J., 2013. A novel electrochemical membrane bioreactor as a potential net energy producer for sustainable wastewater treatment. Scientific Reports, 3:1864-1870. 

[104] Watson, V.J., Saito, T., Hickner, M.A., 2011. Polymer coatings as separator layers for microbial fuel cell cathodes. Journal of Power Sources, 196(6):3009-3014. 

[105] Watson, V.J., Nieto Delgado, C., Logan, B.E., 2013. Influence of chemical and physical properties of activated carbon powders on oxygen reduction and microbial fuel cell performance. Environmental Science & Technology, 47(12):6704-6710. 

[106] Xing, D., Zuo, Y., Cheng, S., 2008. Electricity generation by rhodopseudomonas palustris DX-1. Environmental Science & Technology, 42(11):4146-4151. 

[107] Xu, J., Sheng, G.P., Luo, H.W., 2012. Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Research, 46(6):1817-1824. 

[108] Xu, Y., Jiang, Y., Chen, Y., 2014. Hydrogen production and wastewater treatment in a microbial electrolysis cell with a biocathode. Water Environment Research, 86(7):649-653. 

[109] Yan, H., Saito, T., Regan, J.M., 2012. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode. Water Research, 46(7):2215-2224. 

[110] Yang, S., Jia, B., Liu, H., 2009. Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell. Bioresource Technology, 100(3):1197-1202. 

[111] You, S.J., Zhao, Q.L., Jiang, J.Q., 2006. Sustainable approach for leachate treatment: electricity generation in microbial fuel cell. Journal of Environmental Science and Health, Part A, 41(12):2721-2734. 

[112] You, S.J., Zhao, Q.L., Jiang, J.Q., 2006. Treatment of domestic wastewater with simultaneous electricity generation in microbial fuel cell under continuous operation. Chemical and Biochemical Engineering Quarterly, 20(4):407-412. 

[113] Yu, J., Seon, J., Park, Y., 2012. Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment. Bioresource Technology, 117:172-179. 

[114] Yuan, Y., Zhou, S., Tang, J., 2013.  In situ investigation of cathode and local biofilm microenvironments reveals important roles of OH and oxygen transport in microbial fuel cells. Environmental Science & Technology, 47(9):4911-4917. 

[115] Zhang, B., Zhao, H., Shi, C., 2009. Simultaneous removal of sulfide and organics with vanadium (V) reduction in microbial fuel cells. Journal of Chemical Technology & Biotechnology, 84(12):1780-1786. 

[116] Zhang, B., Zhao, H., Zhou, S., 2009. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresource Technology, 100(23):5687-5693. 

[117] Zhang, F., He, Z., 2012. Simultaneous nitrification and denitrification with electricity generation in dual-cathode microbial fuel cells. Journal of Chemical Technology & Biotechnology, 87(1):153-159. 

[118] Zhang, F., Jacobson, K.S., Torres, P., 2010. Effects of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell. Energy & Environmental Science, 3(9):1347-1352. 

[119] Zhang, F., Pant, D., Logan, B.E., 2011. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosensors and Bioelectronics, 30(1):49-55. 

[120] Zhang, F., Tian, L., He, Z., 2011. Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. Journal of Power Sources, 196(22):9568-9573. 

[121] Zhang, F., Ge, Z., Grimaud, J., 2013.  In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant. Bioresource Technology, 136:316-321. 

[122] Zhang, F., Ge, Z., Grimaud, J., 2013. Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environmental Science & Technology, 47(9):4941-4948. 

[123] Zhang, X., Cheng, S., Wang, X., 2009. Separator characteristics for increasing performance of microbial fuel cells. Environmental Science & Technology, 43(21):8456-8461. 

[124] Zhang, X., Cheng, S., Huang, X., 2010. Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosensors and Bioelectronics, 25(7):1825-1828. 

[125] Zhang, Y., Angelidaki, I., 2012. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes. Water Research, 46(19):6445-6453. 

[126] Zhang, Y., Noori, J.S., Angelidaki, I., 2011. Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC). Energy & Environmental Science, 4(10):4340-4346. 

[127] Zhao, F., Harnisch, F., Schroder, U., 2006. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environmental Science & Technology, 40(17):5193-5199. 

[128] Zhao, F., Rahunen, N., Varcoe, J.R., 2009. Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. Biosensors and Bioelectronics, 24(7):1931-1936. 

[129] Zhou, M., Chi, M., Luo, J., 2011. An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196(10):4427-4435. 

[130] Zhuang, L., Yuan, Y., Wang, Y., 2012. Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater. Bioresource Technology, 123:406-412. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE