CLC number: TU312.3
On-line Access: 2015-08-04
Received: 2014-11-11
Revision Accepted: 2015-06-16
Crosschecked: 2015-07-09
Cited: 3
Clicked: 5105
Citations: Bibtex RefMan EndNote GB/T7714
Yue Wu, Zhao-qing Chen, Xiao-ying Sun. Research on the wind-induced aero-elastic response of closed-type saddle-shaped tensioned membrane models[J]. Journal of Zhejiang University Science A, 2015, 16(8): 656-668.
@article{title="Research on the wind-induced aero-elastic response of closed-type saddle-shaped tensioned membrane models",
author="Yue Wu, Zhao-qing Chen, Xiao-ying Sun",
journal="Journal of Zhejiang University Science A",
volume="16",
number="8",
pages="656-668",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400340"
}
%0 Journal Article
%T Research on the wind-induced aero-elastic response of closed-type saddle-shaped tensioned membrane models
%A Yue Wu
%A Zhao-qing Chen
%A Xiao-ying Sun
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 8
%P 656-668
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400340
TY - JOUR
T1 - Research on the wind-induced aero-elastic response of closed-type saddle-shaped tensioned membrane models
A1 - Yue Wu
A1 - Zhao-qing Chen
A1 - Xiao-ying Sun
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 8
SP - 656
EP - 668
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400340
Abstract: The aero-elastic instability mechanism of a tensioned membrane structure is studied in this paper. The response and wind velocities above two closed-type saddle-shaped tensioned membrane structures, with the same shape but different pre-tension levels, were measured in uniform flow and analyzed. The results indicate that, for most wind directions, several vibration modes are excited and the amplitude and damping ratio of the roof slowly increase with the on-coming flow velocity. However, for particular wind directions, only one vibration mode is excited, and the amplitude and damping ratio of the vibration mode increase slowly with the on-coming flow velocity. The aero-elastic instability is caused by vortex-induced resonance. On exceeding a certain wind speed, the amplitude of the roof vibration increases sharply and the damping ratio of the vibration mode decreases quickly to near zero; the frequency of the vortex above the roof is locked in by the vibration within a certain wind velocity range; the amplitudes of the roof in these wind directions reach 2–4 times the amplitudes for other wind directions. The reduced critical wind speeds for the aero-elastic instability of saddle-shaped membrane structures at the first two modes are around 0.8–1.0.
The paper addresses a relevant topic and describes an interesting study.
[1]Cermak, J.E., 2003. Wind-tunnel development and trends in applications to civil engineering. Journal of Wind Engineering and Industrial Aerodynamics, 91(3):355-370.
[2]Haruo, K., 1975. Flutter of hanging roofs and curved membrane roofs. International Journal of Solids and Structures, 11(4):477-492.
[3]Jenkins, C.H.M., Korde, U.A., 2006. Membrane vibration experiments: an historical review and recent results. Journal of Sound and Vibration, 295(3-5):602-613.
[4]Kareem, A., Gurley, K., 1996. Damping in structures: its evaluation and treatment of uncertainty. Journal of Wind Engineering and Industrial Aerodynamics, 59(2-3):131-157.
[5]Kawamura, S., Kimoto, E., 1979. Aerodynamic stability criteria of one-way types of hanging roofs in smooth uniform flow. Proceedings of 5th International Conference on Wind Engineering, Colorado, USA, p.939-948.
[6]Kim, J.Y., Yu, E., Kim, D.Y., et al., 2011. Long-term monitoring of wind-induced response of a large-span roof structure. Journal of Wind Engineering and Industrial Aerodynamics, 99(9):955-963.
[7]Kimoto, E., Kawamura, S., 1983. Aerodynamic behavior of one-way type hanging roof. Journal of Wind Engineering and Industrial Aerodynamics, 13(1-3):395-405.
[8]Li, Y.Q., Wang, L., Tamura, Y., et al., 2009. Wind tunnel test on levy type cable dome. Proceeding of the 7th Asia-Pacific Conference on Wind Engineering, Taipei, China.
[9]Li, Y.Q., Wang, L., Shen, Z.Y., et al., 2011. Added-mass estimation of flat membranes vibrating in still air. Journal of Wind Engineering and Industrial Aerodynamics, 99(8):815-824.
[10]Li, Y.Q., Wang, L., Shen, Z.Y., et al., 2012. Wind-induced vibration of a circular membrane considering added mass effect based on wind tunnel tests. Proceeding of IASS-APCS 2012 from Spatial Structures to Space Structures, Seoul, Korea.
[11]Marukawa, H., Kato, N., Fujii, K., et al., 1996. Experimental evaluation of aerodynamic damping of tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 59(2-3):177-190.
[12]Matsumoto, T., 1990. Self-excited oscillation of a pretensioned cable roof with single curvature in smooth flow. Journal of Wind Engineering and Industrial Aerodynamics, 34(3):303-318.
[13]Michalski, A., Kermel, P.D., Haug, E., et al., 2011. Validation of the computational fluid–structure interaction simulation at real-scale tests of a flexible 29 m umbrella in natural wind flow. Journal of Wind Engineering and Industrial Aerodynamics, 99(4):400-411.
[14]Minami, H., Okuda, Y., Kawamura, S., 1993. Experimental studies on the flutter behavior of membranes in a wind tunnel. Proceedings of 4th International Conference on Space Structures, London, UK, p.935-945.
[15]Miyake, A., Yoshimura, T., Makin, M., 1992. Aerodynamic instability of suspended roof models. Journal of Wind Engineering and Industrial Aerodynamics, 42(1-3):1471-1482.
[16]Peng, Z.K., Tse, P.W., Chu, F.L., 2005. An improved Hilbert-Huang transform and its application in vibration signal analysis. Journal of Sound and Vibration, 286(1-2):187-205.
[17]Rojratsirikul, P., Wang, Z., Gursul, I., 2010. Effect of pre-strain and excess length on unsteady fluid–structure interactions of membrane airfoils. Journal of Fluids and Structures, 26(3):359-376.
[18]Sygulski, R., 2007. Stability of membrane in low subsonic flow. International Journal of Non-Linear Mechanics, 42(1):196-202.
[19]Takeuchi, M., Maeda, J., Ishida, N., 2010. Aerodynamic damping properties of two transmission towers estimated by combining several identification methods. Journal of Wind Engineering and Industrial Aerodynamics, 98(12):872-880.
[20]Tryggvason, B.V., 1979. Aeroelastic modeling of pneumatic and tensioned fabric structures. Proceedings of 5th International Conference on Wind Engineering, Colorado, USA, p.1061-1072.
[21]Uematsu, Y., Uchiyama, K., 1982. Wind-induced Dynamic Behavior of Suspended Roofs. Technology Report, Tohoku University, Japan.
[22]Uematsu, Y., Uchiyama, K., 1985. An experimental investigation of wind-induced ovalling oscillations of thin, circular cylindrical shell. Journal of Wind Engineering and Industrial Aerodynamics, 18(3):229-243.
[23]Uematsu, Y., Uchiyama, K., 1986. Aeroelastic behavior of an HP shaped suspended roof. Proceedings of IASS Symposium on Shells, Membrane and Space Frames, Osaka, Japan, p.241-248.
[24]Uematsu, Y., Tsujiguchi, N., Yamada, M., 2001. Mechanism of ovalling vibrations of cylindrical shells in cross flow. Wind and Structures, 4(2):85-100.
[25]Wu, Y., Sun, X.Y., Shen, S.Z., 2008. Computation of wind–structure interaction on tension structures. Journal of Wind Engineering and Industrial Aerodynamics, 96(10-11):2019-2032.
[26]Yang, Q.S., Liu, R.X., 2005. On aerodynamic stability of membrane structures. International Journal of Space Structures, 20(3):181-188.
[27]Yang, Q.S., Wu, Y., Zhu, W.L., 2010. Experimental study on interaction between membrane structures and wind environment. Earthquake Engineering and Engineering Vibration, 9(4):523-532.
[28]Zhang, Z.H., Tamura, Y., 2007. Wind tunnel test on cable dome of Geiger type. Journal of Computational and Nonlinear Dynamics, 2(3):218-224.
[29]Zhou, Y., Li, Y.Q., Shen, Z.Y., et al., 2014. Numerical analysis of added mass for open flat membrane vibrating in still air using the boundary element method. Journal of Wind Engineering and Industrial Aerodynamics, 131: 100-111.
Open peer comments: Debate/Discuss/Question/Opinion
<1>