Full Text:   <3012>

Summary:  <2174>

CLC number: TH12

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-04-13

Cited: 1

Clicked: 5252

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yan-long Cao

http://orcid.org/0000-0003-0383-6586

Jiang-xin Yang

http://orcid.org/0000-0001-5123-7436

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.5 P.371-386

http://doi.org/10.1631/jzus.A1500029


Effects of geometric and spindle errors on the quality of end turning surface


Author(s):  Jiang-xin Yang, Jia-yan Guan, Xue-feng Ye, Bo Li, Yan-long Cao

Affiliation(s):  Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   sdcaoyl@zju.edu.cn

Key Words:  Surface quality, Geometric errors, Spindle errors, Homogeneous transformation matrix (HTM), Principal component analysis (PCA), End turning surface


Jiang-xin Yang, Jia-yan Guan, Xue-feng Ye, Bo Li, Yan-long Cao. Effects of geometric and spindle errors on the quality of end turning surface[J]. Journal of Zhejiang University Science A, 2015, 16(5): 371-386.

@article{title="Effects of geometric and spindle errors on the quality of end turning surface",
author="Jiang-xin Yang, Jia-yan Guan, Xue-feng Ye, Bo Li, Yan-long Cao",
journal="Journal of Zhejiang University Science A",
volume="16",
number="5",
pages="371-386",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500029"
}

%0 Journal Article
%T Effects of geometric and spindle errors on the quality of end turning surface
%A Jiang-xin Yang
%A Jia-yan Guan
%A Xue-feng Ye
%A Bo Li
%A Yan-long Cao
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 5
%P 371-386
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500029

TY - JOUR
T1 - Effects of geometric and spindle errors on the quality of end turning surface
A1 - Jiang-xin Yang
A1 - Jia-yan Guan
A1 - Xue-feng Ye
A1 - Bo Li
A1 - Yan-long Cao
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 5
SP - 371
EP - 386
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500029


Abstract: 
The geometric and spindle errors inevitably affect the quality of the end turning surface. These errors cause resultant positioning errors at the tool tip, which are defined as the difference between the actual and commanded tool tip position. This paper proposes an approach for modeling and simulation of the surface generated in end turning process. The model incorporates the effects of the positioning errors between the tool tip and the part being machined. It provides the possibility to simulate the surface topography for given errors. Based on the proposed model, groups of simulation experiments are conducted to investigate the effects of geometric and spindle errors on the topography of end turning surface. To further analyze the effect of these errors on the surface roughness, a set of simulation experiments have been designed according to the Taguchi method. The simulation results show that the surface roughness of end turning surface is more sensitive to the spindle displacement error compared with other error components. At the end of this paper, a simple method to find the principal error component is proposed.

数控机床几何和主轴误差对精密车削端面表面质量的影响

目的:建立端面车削加工模型和不同误差下车削表面形貌的仿真方法,分析车床误差与切削加工表面形貌之间的关联关系。
创新点:1.考虑机床几何误差和主轴运动误差的影响,将车床综合运动误差模型引入到表面形貌仿真中,建立车削端面表面形貌三维仿真模型;2.研究主轴误差和几何误差对表面粗糙度的影响,分析各项误差影响的显著性水平。
方法:1.分析典型的车床结构及误差元素,建立车床综合误差模型(表1、图1和图2);2.分析车削加工表面成型机理,研究车床误差对端面车削表面质量的影响规律,建立两者之间的数学映射关系(图3和图6);3.基于正交实验法设计仿真实验,分析不同误差的影响趋势(图9、图10、表3和表4)。
结论:1.车床几何误差和主轴误差对端面车削加工表面形貌影响很大,其中导轨直线度会线性地叠加到车削端面的径向廓上;主轴绕y轴的转角误差、导轨绕y轴的转角误差和车床导轨间的垂直度误差会使车削端面的径向轮廓出现倾斜现象;主轴的位移误差会导致车削表面产生脊峰。2.加工表面粗糙度受主轴位移误差的振幅和频率影响较大。

关键词:表面质量;几何误差;主轴误差;齐次变换矩阵;主成分分析;车削端面

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abbaszadeh-Mir, Y., Mayer, J.R.R., Cloutier, G., et al., 2002. Theory and simulation for the identification of the link geometric errors for a five-axis machine tool using a telescoping magnetic ball-bar. International Journal of Production Research, 40(18):4781-4797.

[2]Aramcharoen, A., Mativenga, P.T., 2009. Size effect and tool geometry in micromilling of tool steel. Precision Engineering, 33(4):402-407.

[3]Bispink, T., 1992. Performance analysis of feed-drive systems in diamond turning by machining specified test samples. CIRP Annals-Manufacturing Technology, 41(1):601-604.

[4]Brandt, C., Krause, A., Niebsch, J., et al., 2013. Surface generation process with consideration of the balancing state in diamond machining. In: Denkena, B., Hollmann, F. (Eds.), Process Machine Interactions. Springer Berlin Heidelberg, p.329-360.

[5]Bringmann, B., Knapp, W., 2006. Model-based ‘chase-the-ball’ calibration of a 5-axes machining center. CIRP Annals-Manufacturing Technology, 55(1):531-534.

[6]Cheung, C.F., Lee, W.B., 2000. Modelling and simulation of surface topography in ultra-precision diamond turning. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 214(6):463-480.

[7]Cheung, C.F., Lee, W.B., 2002. Prediction of the effect of tool interference on surface generation in single-point diamond turning. The International Journal of Advanced Manufacturing Technology, 19(4):245-252.

[8]Choi, J.P., Lee, S.J., Kwon, H.D., 2003. Roundness error prediction with a volumetric error model including spindle error motions of a machine tool. The International Journal of Advanced Manufacturing Technology, 21(12):923-928.

[9]Dong, W.P., Sullivan, P.J., Stout, K.J., 1994. Comprehensive study of parameters for characterizing three-dimensional surface topography. Part III. Parameters for characterizing amplitude and some functional properties. Wear, 178(1-2):29-43.

[10]Krystek, M., 1996. A fast Gauss filtering algorithm for roughness measurements. Precision Engineering, 19(2-3):198-200.

[11]Okafor, A.C., Ertekin, Y.M., 2000. Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. International Journal of Machine Tools and Manufacture, 40(8):1199-1213.

[12]Ramesh, R., Mannan, M.A., Poo, A.N., 2000. Error compensation in machine tools—a review: Part I: geometric, cutting-force induced and fixture dependent errors. International Journal of Machine Tools and Manufacture, 40(9):1235-1256.

[13]Slocum, A.H., 1992. Precision Machine Design. Society of Manufacturing Engineers, USA, p.58-76.

[14]Taha, Z., Lelana, H.K., Aoyama, H., et al., 2010. Insert geometry effects on surface roughness in turning process of AISI D2 steel. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 11(12):966-971.

[15]Tian, W.J., Gao, W.G., Zhang, D.W., 2014. A general approach for error modeling of machine tools. International Journal of Machine Tools and Manufacture, 79:17-23.

[16]Yang, D., Liu, Z.Q., 2015. Surface plastic deformation and surface topography prediction in peripheral milling with variable pitch end mill. International Journal of Machine Tools and Manufacture, 91:43-53.

[17]Yusoff, A.R., Turner, S., Taylor, C.M., 2010. The role of tool geometry in process damped milling. The International Journal of Advanced Manufacturing Technology, 50(9-12):883-895.

[18]Zhong, G.Y., Wang, C.Q., Yang, S.F., 2015. Position geometric error modeling, identification and compensation for large 5-axis machining center prototype. International Journal of Machine Tools and Manufacture, 89:142-150.

[19]Zhou, L., 2009. Dynamic Micro/Nano Cutting System Modeling for Prediction and Analysis of Surface Topography. PhD Thesis, Harbin Institute of Technology, Harbin, China (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE