Full Text:   <2912>

Summary:  <2039>

CLC number: U661.1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-12-16

Cited: 1

Clicked: 5101

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yu Lu

http://orcid.org/0000-0001-7859-2876

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.2 P.130-143

http://doi.org/10.1631/jzus.A1500053


A meshless method based on moving least squares for the simulation of free surface flows


Author(s):  Yu Lu, An-kang Hu, Ya-chong Liu, Chao-shuai Han

Affiliation(s):  College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China; more

Corresponding email(s):   luyu90627@126.com

Key Words:  Meshless method, Moving least squares (MLS), Free surface flows, Finite pointset method (FPM), Dam-breaking flows, Solitary wave propagation, Liquid sloshing of tanks


Yu Lu, An-kang Hu, Ya-chong Liu, Chao-shuai Han. A meshless method based on moving least squares for the simulation of free surface flows[J]. Journal of Zhejiang University Science A, 2016, 17(2): 130-143.

@article{title="A meshless method based on moving least squares for the simulation of free surface flows",
author="Yu Lu, An-kang Hu, Ya-chong Liu, Chao-shuai Han",
journal="Journal of Zhejiang University Science A",
volume="17",
number="2",
pages="130-143",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500053"
}

%0 Journal Article
%T A meshless method based on moving least squares for the simulation of free surface flows
%A Yu Lu
%A An-kang Hu
%A Ya-chong Liu
%A Chao-shuai Han
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 2
%P 130-143
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500053

TY - JOUR
T1 - A meshless method based on moving least squares for the simulation of free surface flows
A1 - Yu Lu
A1 - An-kang Hu
A1 - Ya-chong Liu
A1 - Chao-shuai Han
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 2
SP - 130
EP - 143
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500053


Abstract: 
In this paper, a meshless method based on moving least squares (MLS) is presented to simulate free surface flows. It is a Lagrangian particle scheme wherein the fluid domain is discretized by a finite number of particles or pointset; therefore, this meshless technique is also called the finite pointset method (FPM). FPM is a numerical approach to solving the incompressible Navier–Stokes equations by applying the projection method. The spatial derivatives appearing in the governing equations of fluid flow are obtained using MLS approximants. The pressure Poisson equation with Neumann boundary condition is handled by an iterative scheme known as the stabilized bi-conjugate gradient method. Three types of benchmark numerical tests, namely, dam-breaking flows, solitary wave propagation, and liquid sloshing of tanks, are adopted to test the accuracy and performance of the proposed meshless approach. The results show that the FPM based on MLS is able to simulate complex free surface flows more efficiently and accurately.

The authors propose a finite pointset method (FPM) for the solution of complex three dimensional incompressible free surface flows with large deformations of the computational domain. The solid wall boundary conditions are taken into account via boundary particles, while the free surface boundary condition is imposed as homogeneous Dirichlet boundary on particles that have been identified by an unspecified ad hoc particle-density-based technique. The governing PDE are discretized with a moving-least-squares-based projection method on a moving domain.

一种基于移动最小二乘无网格法的自由面流动数值研究

目的:自由面流动中的大变形、复杂几何边界等问题一直备受工程界的关注。本文基于拉格朗日观点,采用移动最小二乘的无网格技术数值模拟流场,研究溃坝流、孤立波传播及液舱晃荡等复杂变形的自由面流动,验证该方法的准确性与可靠性。
创新点:1. 通过不可压缩Navier-Stokes方程,采用投影法推导出压力与速度之间的关系;2. 借助移动最小二乘法的思想,对压力泊松方程进行离散求解。
方法:1. 通过理论推导,得出不可压缩流动中压力与速度之间的泊松方程式,并采用移动最小二乘法离散求解该偏微分方程;2. 采用数值计算,对自由面流动问题中的三个典型算例进行模拟;3. 将数值计算结果与文献中的试验结果进行比较。
结论:1. 基于移动最小二乘的无网格法能够较准确地模拟自由面流动中的液体迸溅、翻滚、破碎以及入水等强非线性现象,在处理大变形流动问题时体现出较好的灵活性及较强的自由面模拟能力;2. 对比分析数值计算结果与试验现象,得到一致性较好的结果,验证了该无网格法的准确性与可靠性。

关键词:无网格法;移动最小二乘;自由面流动;有限点法;溃坝流;孤立波传播;液舱晃荡

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ata, R., Soulaïmani, A., 2005. A stabilized SPH method for inviscid shallow water flows. International Journal for Numerical Methods in Fluids, 47(2):139-159.

[2]Belytschko, T., Krongauz, Y., Fleming, M., et al., 1996. Smoothing and accelerated computations in the element free Galerkin method. Journal of Computational and Applied Mathematics, 74(1-2):111-126.

[3]Benz, W., Asphaug, E., 1995. Simulations of brittle solids using smooth particle hydrodynamics. Computer Physics Communications, 87(1-2):253-265.

[4]Chan, R.K.C., Street, R.L., 1970. A computer study of finite-amplitude water waves. Journal of Computational Physics, 6(1):68-94.

[5]Chorin, A.J., 1968. Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 22(104):745-762.

[6]Cleary, P.W., Monaghan, J.J., 1999. Conduction modelling using smoothed particle hydrodynamics. Journal of Computational Physics, 148(1):227-264.

[7]Cleary, P.W., Prakash, M., 2004. Discrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciences. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362(1822):2003-2030.

[8]Cummins, S.J., Rudman, M., 1999. An SPH projection method. Journal of Computational Physics, 152(2):584-607.

[9]Deshpande, S.M., Kulkarni, P.S., Ghosh, A.K., 1998. New developments in kinetic schemes. Computers & Mathematics with Applications, 35(1-2):75-93.

[10]Dilts, G.A., 1999. Moving-least-squares-particle hydrodynamics—I. Consistency and stability. International Journal for Numerical Methods in Engineering, 44(8):1115-1155.

[11]Dumbser, M., 2013. A diffuse interface method for complex three-dimensional free surface flows. Computer Methods in Applied Mechanics and Engineering, 257:47-64.

[12]Ellero, M., Kröger, M., Hess, S., 2002. Viscoelastic flows studied by smoothed particle dynamics. Journal of Non-Newtonian Fluid Mechanics, 105(1):35-51.

[13]Fang, J., Owens, R.G., Tacher, L., et al., 2006. A numerical study of the SPH method for simulating transient viscoelastic free surface flows. Journal of Non-Newtonian Fluid Mechanics, 139(1-2):68-84.

[14]Ferrari, A., Dumbser, M., Toro, E.F., et al., 2008. A new stable version of the SPH method in Lagrangian coordinates. Communications in Computational Physics, 4:378-404 (in Russian).

[15]Ferrari, A., Dumbser, M., Toro, E.F., et al., 2009. A new 3D parallel SPH scheme for free surface flows. Computers & Fluids, 38(6):1203-1217.

[16]Flebbe, O., Muenzel, S., Herold, H., et al., 1994. Smoothed particle hydrodynamics: physical viscosity and the simulation of accretion disks. The Astrophysical Journal, 431:754-760.

[17]Gingold, R.A., Monaghan, J.J., 1977. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3):375-389.

[18]Kishev, Z.R., Hu, C., Kashiwagi, M., 2006. Numerical simulation of violent sloshing by a CIP-based method. Journal of Marine Science and Technology, 11(2):111-122.

[19]Koshizuka, S., Oka, Y., 1996. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Science and Engineering, 123(3):421-434.

[20]Koshizuka, S., Oka, Y., Tamako, H., et al., 1995. A Particle Method for Calculating Splashing of Incompressible Viscous Fluid. Technical Report No. CONF-950420– TRN: 97:001160-0134, American Nuclear Society, Inc., La Grange Park, IL, USA.

[21]Libersky, L.D., Petschek, A.G., Carney, T.C., et al., 1993. High strain Lagrangian hydrodynamics a three-dimensional SPH code for dynamic material response. Journal of Computational Physics, 109(1):67-75.

[22]Löhner, R., Sacco, C., Oñate, E., et al., 2002. A finite point method for compressible flow. International Journal for Numerical Methods in Engineering, 53(8):1765-1779.

[23]Lu, Y., Hu, A.K., Liu, Y.C., 2015. A finite pointset method for the numerical simulation of free surface flow around a ship. Journal of Marine Science and Technology, p.1-13.

[24]Lucy, L.B., 1977. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 82:1013-1024.

[25]Martin, J.C., Moyce, W.J., 1952. Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 244(882):312-324.

[26]Maveyraud, C., Benz, W., Sornette, A., et al., 1999. Solid friction at high sliding velocities: an explicit three-dimensional dynamical smoothed particle hydrodynamics approach. Journal of Geophysical Research, 104(B12):28769-28788.

[27]Monaghan, J.J., 1994. Simulating free surface flows with SPH. Journal of Computational Physics, 110(2):399-406.

[28]Monaghan, J.J., 2002. SPH compressible turbulence. Monthly Notices of the Royal Astronomical Society, 335(3):843-852.

[29]Monaghan, J.J., Kocharyan, A., 1995. SPH simulation of multi-phase flow. Computer Physics Communications, 87(1-2):225-235.

[30]Morris, J.P., 2000. Simulating surface tension with smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, 33(3):333-353.

[31]Morris, J.P., Fox, P.J., Zhu, Y., 1997. Modeling low Reynolds number incompressible flows using SPH. Journal of Computational Physics, 136(1):214-226.

[32]Oger, L., Savage, S.B., 1999. Smoothed particle hydrodynamics for cohesive grains. Computer Methods in Applied Mechanics and Engineering, 180(1-2):169-183.

[33]Oñate, E., Idelsohn, S.R., 1998. A mesh-free finite point method for advective-diffusive transport and fluid flow problems. Computational Mechanics, 21(4-5):283-292.

[34]Oñate, E., Idelsohn, S.R., Zienkievicz, O.C., et al., 1996a. A finite point method in computational mechanics to convective transport and fluid flow. International Journal for Numerical Methods in Engineering, 39(22):3839-3866.

[35]Oñate, E., Idelsohn, S.R., Zienkievicz, O.C., et al., 1996b. A stabilized finite point method for analysis of fluid mechanics problems. Computer Methods in Applied Mechanics and Engineering, 139(1-4):315-346.

[36]Oñate, E., Sacco, C., Idelsohn, S.R., 2000. A finite point method for incompressible flow problems. Computing and Visualization in Science, 3(1-2):67-75.

[37]Shao, S., Lo, E.Y., 2003. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in Water Resources, 26(7):787-800.

[38]Song, C., Zhang, H.X., Huang, J., et al., 2006. Meshless simulation for skeleton driven elastic deformation. Journal of Zhejiang University-SCIENCE A, 7(9):1596-1602.

[39]Takeda, H., Miyama, S.M., Sekiya, M., 1994. Numerical simulation of viscous flow by smoothed particle hydrodynamics. Progress of Theoretical Physics, 92(5):939-960.

[40]van der Vorst, H.A., 1981. Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising from PDE-problems. Journal of Computational Physics, 44(1):1-19.

[41]van der Vorst, H.A., 1992. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13(2):631-644.

[42]Watkins, S.J., Bhattal, A.S., Francis, N., et al., 1996. A new prescription for viscosity in smoothed particle hydrodynamics. Astronomy and Astrophysics Supplement Series, 119(1):177-187.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE