CLC number: TH161.12
On-line Access: 2017-01-03
Received: 2015-12-06
Revision Accepted: 2016-06-02
Crosschecked: 2016-12-19
Cited: 0
Clicked: 4982
Xiao-wen Song, Peng-zhe Lin, Rui Liu, Pei Zhou. Skin friction reduction characteristics of variable ovoid non-smooth surfaces[J]. Journal of Zhejiang University Science A, 2017, 18(1): 59-66.
@article{title="Skin friction reduction characteristics of variable ovoid non-smooth surfaces",
author="Xiao-wen Song, Peng-zhe Lin, Rui Liu, Pei Zhou",
journal="Journal of Zhejiang University Science A",
volume="18",
number="1",
pages="59-66",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500324"
}
%0 Journal Article
%T Skin friction reduction characteristics of variable ovoid non-smooth surfaces
%A Xiao-wen Song
%A Peng-zhe Lin
%A Rui Liu
%A Pei Zhou
%J Journal of Zhejiang University SCIENCE A
%V 18
%N 1
%P 59-66
%@ 1673-565X
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500324
TY - JOUR
T1 - Skin friction reduction characteristics of variable ovoid non-smooth surfaces
A1 - Xiao-wen Song
A1 - Peng-zhe Lin
A1 - Rui Liu
A1 - Pei Zhou
J0 - Journal of Zhejiang University Science A
VL - 18
IS - 1
SP - 59
EP - 66
%@ 1673-565X
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500324
Abstract: The use of bionic non-smooth surfaces is a popular approach for saving energy because of their drag reduction property. Conventional non-smooth structures include riblets and dimples. Inspired by sand dunes, a novel variable ovoid non-smooth structure is proposed in this study. The body of the variable ovoid dimple was designed based on three size parameters, the radius, semimajor, and depth, and a 3D model was created based on UG software. The constructed variable dimples were placed in a rectangular array on the bottom of a square tube model. Following ANSYS meshing, the grid model was imported into FLUENT, where the flow characteristics were calculated. Results of skin friction reduction were achieved and the effect of the design parameters on different variable ovoid dimples was obtained by orthogonal testing. Various aspects of the skin friction reduction mechanism were discussed including the distribution of velocity vectors, variation in boundary layer thickness, and pressure distribution.
[1]Bixler, G.D., Bhushan, B., 2013. Shark skin inspired low-drag microstructured surfaces in closed channel flow. Journal of Colloid and Interface Science, 393:384-396.
[2]Boiko, A.V., Jung, K.H., Chun, H.H., et al., 2007. Effect of riblets on the streaky structures excited by free stream tip vortices in boundary layer. Journal of Mechanical Science and Technology, 21(1):196-206.
[3]Bourisli, R.I., Al-Sahhaf, A.A., 2008. CFD modeling of turbulent boundary layer flow in passive drag-reducing applications. 7th International Conference on Advances in Fluid Mechanics, p.79-90.
[4]Bullen, R.D., McKenzie, N.L., 2008. The pelage of bats (Chiroptera) and the presence of aerodynamic riblets: the effect on aerodynamic cleanliness. Zoology, 111(4):279-286.
[5]Choi, J., Jeon, W., Choi, H., 2006. Mechanism of drag reduction by dimples on a sphere. Physics of Fluids, 18(4):041702.
[6]Dean, B., Bhushan, B., 2010. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Advance in Mechanics, 368(1929):4775-4806.
[7]Dean, B., Bhushan, B., 2012. The effect of riblets in rectangular duct flow. Applied Surface Science, 258(8):3936-3947.
[8]Gao, G., Huang, N., 1982. Theoretical and experimental study in stability of the barchan dune vortex flame. Journal of Engineering Thermophysics, 3(1):89-95 (in Chinese).
[9]Gu, Y.Q., Zhao, G., Liu, H., et al., 2013. Characteristics of drag reduction of bionic dimpled surface of shell rubber ring of aerodynamic extinguishing cannon. Journal of Jilin University (Engineering and Technology Edition), 43(4):983-990 (in Chinese).
[10]Kim, J., Choi, H., 2014. Aerodynamics of a golf ball with grooves. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 228(4):233-241.
[11]Matthews, J.N.A., 2008. Low-drag suit propels swimmers. Physics Today, 61(8):32-33.
[12]Ren, L.Q., 2009. Progress in the bionic study on anti-adhesion and resistance reduction of terrain machines. Science in China Series E: Technological Sciences, 52(2):273-284.
[13]Song, X.W., Zhang, G.G., Wang, Y., et al., 2011. Use of bionic inspired surfaces for aerodynamic drag reduction on motor vehicle body panels. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(7):543-551.
[14]Viswanath, P.R., 2002. Aircraft viscous drag reduction using riblets. Progress in Aerospace Sciences, 38(6-7):571-600.
[15]Zhang, C.C., Ren, L.Q., Liu, Q.P., et al., 2008. Experimental study on bionic dimpled surfaces of bodies of revolution for drag reduction. Acta Aerodynamica Sinica, 26(1):79-84 (in Chinese).
[16]Zhang, D.Y., Luo, Y.H., Li, X., et al., 2011. Numerical simulation and experimental study of drag-reducing surface of a real shark skin. Journal of Hydrodynamics, Ser. B, 23(2):204-211.
Open peer comments: Debate/Discuss/Question/Opinion
<1>