Full Text:   <2285>

Summary:  <1872>

CLC number: TU411.93

On-line Access: 2016-07-05

Received: 2016-05-15

Revision Accepted: 2016-06-22

Crosschecked: 2016-06-26

Cited: 0

Clicked: 3870

Citations:  Bibtex RefMan EndNote GB/T7714


Xiao-chuan Liu


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.7 P.553-564


Laboratory and numerical study on an enhanced evaporation process in a loess soil column subjected to heating

Author(s):  Xiao-chuan Liu, Wen-jie Xu, Liang-tong Zhan, Yun-min Chen

Affiliation(s):  MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   wenjiexu@zju.edu.cn

Key Words:  Soil column, Heating, Evaporation, Water vapor diffusion, Thermo-hydraulic coupled model

Xiao-chuan Liu, Wen-jie Xu, Liang-tong Zhan, Yun-min Chen. Laboratory and numerical study on an enhanced evaporation process in a loess soil column subjected to heating[J]. Journal of Zhejiang University Science A, 2016, 17(7): 553-564.

@article{title="Laboratory and numerical study on an enhanced evaporation process in a loess soil column subjected to heating",
author="Xiao-chuan Liu, Wen-jie Xu, Liang-tong Zhan, Yun-min Chen",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Laboratory and numerical study on an enhanced evaporation process in a loess soil column subjected to heating
%A Xiao-chuan Liu
%A Wen-jie Xu
%A Liang-tong Zhan
%A Yun-min Chen
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 7
%P 553-564
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600246

T1 - Laboratory and numerical study on an enhanced evaporation process in a loess soil column subjected to heating
A1 - Xiao-chuan Liu
A1 - Wen-jie Xu
A1 - Liang-tong Zhan
A1 - Yun-min Chen
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 7
SP - 553
EP - 564
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600246

The water vapor diffusion can be enhanced by the heating from municipal solid waste, and significantly impact the evaporation process in the earthen final cover. The parameters associated with the water vapor diffusion are usually measured by using the instantaneous profile method. This method is very time-consuming because the drying process lasts a long time. In this study, a bottom heating method is proposed to accelerate the drying process in a loess soil column. A constant temperature of 70 °C is applied at the bottom of the soil column. The thermo-hydraulic response of the loess is monitored along the soil column. A numerical model is developed to simulate the coupled thermo-hydraulic process. The numerical model is used to back analyze the tortuosity τ of the loess for vapor diffusion and the parameter a of an empirical evaporation function. We found that the bottom heating accelerated the drying process of the soil column by almost 22 d compared with the conditions without heating under the same evaporation boundary. Before Day 15, the proportions of the enhanced vapor flux in the total water loss were higher than 50%, dominating the evaporation process. The experimental and numerical study demonstrated that the proposed heating method is able to obtain the parameters of vapor diffusion more efficiently than the conventional method.


目的:土质覆盖层下的城市固体废弃物由于生化降解反应具有更高温度,该温度梯度增强了土质覆盖层内的水蒸气扩散,在覆盖层的蒸发模拟中不容忽视。与水蒸气扩散相关的参数一般通过瞬态剖面法测量,但在一定蒸发边界下的土体干燥过程会持续很长时间,因此这种传统测量方法十分耗时。本文旨在提出一个底部加热的新方法加速黄土土柱脱湿,更为高效地获取水蒸气运移相关 参数。
创新点:1. 提出一个全新的底部加热方法用于加速土体脱湿,同时利用提出的数值模型反分析得到水蒸气运移的相关参数挠曲度τ;2. 发现底部加热加速脱湿的根本原因在于极大增强的水蒸气扩散。
方法:1. 研制一套室内黄土土柱试验装置(图3);2. 在土柱底部施加恒温70 °C,监测黄土的水热响应(图4);3. 提出一个数值模型模拟这一水热耦合运移过程,利用该模型反分析影响水蒸气运移的关键参数,包括试验黄土的挠曲度τ和经验蒸发公式的参数a
结论:1. 在相同蒸发边界下,相比不加热的情况,底部加热使土柱脱湿加速了最高22天;2. 在第15天前,加热增强的水蒸气流量主导黄土蒸发过程,一直占总水分损失量的50%以上;3. 试验及数值模拟结果均表明,相比传统方法,本文提出的底部加热法可更为高效地获取水蒸气运移参数。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Albright, W.H., Glendon, W.G., 2002. Alternative Cover Assessment Project (ACAP): Phase I Report. Desert Research Institute, USA.

[2]ASTM (American Society for Testing and Materials), 2005. Standard Test Method for Water Content and Density of Soil in Place by Time Domain Reflectometry (TDR), D6780-05. National Standards of the USA.

[3]Benson, C., Othman, M., 1993. Hydraulic conductivity of compacted clay frozen and thawed in situ. Journal of Geotechnical Engineering, 119(2):276-294.

[4]Bolen, M.M., Roesler, A.C., Benson, C.H., et al., 2001. Alternative Cover Assessment Program: Phase II Report. Geo-Engineering Report.

[5]Corser, P., Pellicer, J., Cranston, M., 1992. Observations on the Long Term Performance of Composite Clay Liners and Covers. Geotechnical Fabrics Report, p.6-16.

[6]Dach, J., Jager, J., 1995. Prediction of gas and temperature with the disposal of pretreated residential waste. Proceedings of the 5th International Waste Management and Landfill Symposium, CISA, Italy, I:665-677.

[7]Kolditz, O., Görke, U., Shao, H.B., et al., 2012a. Thermo-Hydro-Mechanical-Chemical Processes in Porous Media. Springer, Berlin Heidelberg, Germany, p.89.

[8]Kolditz, O., Bauer, S., Bilke, L., et al., 2012b. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences, 67(2):589-599.

[9]Leung, M.K.H., Chan, K.Y., 2009. Theoretical and experimental studies of heat transfer with moving phase-change interface in freezing and thawing of porous potting soil. Journal of Zhejiang University-SCIENCE A, 10(1):1-6.

[10]Lewis, R.W., Schrefler, B.A., 1998. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd Edition. Wiley, New York, USA, p.508.

[11]Meerdink, J.S., Benson, C.H., Khire, M.V., 1996. Unsaturated hydraulic conductivity of two compacted barrier soils. Journal of Geotechnical Engineering, 122(7):565-576.

[12]Ng, C.W.W., Leung, A.K., 2012. Measurements of drying and wetting permeability functions using a new stress-controllable soil column. Journal of Geotechnical and Geoenvironmental Engineering, 138(1):58-68.

[13]Nissen, H.H., Ferré, T., Moldrup, P., 2003. Sample area of two- and three-rod time domain reflectometry probes. Water Resources Research, 39(10), No. 1289.

[14]Othman, M., Benson, C., Chamberlain, E., Zimmie, T., 1994. Laboratory testing to evaluate changes in hydraulic conductivity caused by freeze-thaw: state-of-the-art. Hydraulic Conductivity and Waste Containment Transport in Soils, STP1142, ASTM, p.227-254.

[15]Rutqvist, J., Börgesson, L., Chijimatsu, M., et al., 2001. Thermohydromechanics of partially saturated geological media: governing equations and formulation of four finite element models. International Journal of Rock Mechanics and Mining Sciences, 38(1):105-127.

[16]Sanavia, L., Pesavento, F., Schrefler, B.A., 2005. Finite element analysis of non-isothermal multiphase geomaterials with application to strain localization simulation. Computational Mechanics, 37(4):331-348.

[17]Scanlon, B.R., Reedy, R.C., Keese, K.E., et al., 2005. Evaluation of evapotranspirative covers for waste containment in arid and semiarid regions in the southwestern USA. Vadose Zone Journal, 4(1):55-71.

[18]Shackelford, C.D., 2005. Environmental issues in geotechnical engineering. Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan. ICSMGE, Millpress, Rotterdam, The Netherlands, 16(1):95-122.

[19]Song, W.K., 2014. Experimental Investigation of Water Evaporation from Sand and Clay Using an Environmental Chamber. PhD Thesis, Université Paris-Est, Paris, France.

[20]Song, W.K., Cui, Y.J., Tang, A.M., et al., 2014. Experimental study on water evaporation from sand using environmental chamber. Canadian Geotechnical Journal, 51(2):115-128.

[21]Soilmoisture Equipment Co., 2005. Operation Instructions: The Model 2100F Soilmoisture Probe. Goleta, CA, USA.

[22]Tristancho, J., Caicedo, B., Thorel, L., et al., 2012. Climatic chamber with centrifuge to simulate different weather conditions. Geotechnical Testing Journal, 35(1):159-171.

[23]van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5):892-898.

[24]Wang, W., Kosakowski, G., Kolditz, O., 2009. A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Computers & Geosciences, 35(8):1631-1641.

[25]Wang, W., Rutqvist, J., Gorke, U.J., et al., 2011. Non-isothermal flow in low permeable porous media: a comparison of unsaturated and two-phase flow approaches. Environmental Earth Sciences, 62(6):1197-1207.

[26]Xu, W.J., Shao, H., Hesser, J., et al., 2014. Numerical modelling of moisture controlled laboratory swelling/shrinkage experiments on argillaceous rocks. In: Norris, S., Bruno, J., Cathelineau, M. (Eds.), Clays in Natural and Engineered Barriers for Radioactive Waste Confinement. Geological Society of London, London, p.359-366.

[27]Yu, X., Drnevich, V.P., 2004. Soil water content and dry density by time domain reflectometry. Journal of Geotechnical and Geoenvironmental Engineering, 130(9):922-934.

[28]Zhan, T.L., 2015. Moisture and gas flow properties of compacted loess final covers for MSW landfills in Northwest China. The 6th Asian-Pacific Region Conference of Unsaturated Soil Mechanics, Guilin, China.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE