Full Text:   <2061>

Summary:  <1755>

CLC number: TU45

On-line Access: 2016-10-08

Received: 2015-10-31

Revision Accepted: 2016-06-17

Crosschecked: 2016-09-26

Cited: 0

Clicked: 3574

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ren-peng CHEN

http://orcid.org/0000-0001-6968-4955

Xin-sheng Yin

http://orcid.org/0000-0002-1886-091X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.10 P.818-827

http://doi.org/10.1631/jzus.A1500290


A column system for modeling bentonite slurry infiltration in sands


Author(s):  Xin-sheng Yin, Ren-peng Chen, Yu-chao Li, Shuai Qi

Affiliation(s):  MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   chenrp@zju.edu.cn

Key Words:  Infiltration column, Slurry penetration, Tunneling shield, Filter cake, Hydraulic conductivity


Xin-sheng Yin, Ren-peng Chen, Yu-chao Li, Shuai Qi. A column system for modeling bentonite slurry infiltration in sands[J]. Journal of Zhejiang University Science A, 2016, 17(10): 818-827.

@article{title="A column system for modeling bentonite slurry infiltration in sands",
author="Xin-sheng Yin, Ren-peng Chen, Yu-chao Li, Shuai Qi",
journal="Journal of Zhejiang University Science A",
volume="17",
number="10",
pages="818-827",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500290"
}

%0 Journal Article
%T A column system for modeling bentonite slurry infiltration in sands
%A Xin-sheng Yin
%A Ren-peng Chen
%A Yu-chao Li
%A Shuai Qi
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 10
%P 818-827
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500290

TY - JOUR
T1 - A column system for modeling bentonite slurry infiltration in sands
A1 - Xin-sheng Yin
A1 - Ren-peng Chen
A1 - Yu-chao Li
A1 - Shuai Qi
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 10
SP - 818
EP - 827
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500290


Abstract: 
Pressurized bentonite slurry is applied on a tunnel face to form a filter cake to stabilize the tunnel face when the slurry shield excavates through the sandy soil. Failure of the tunnel face may be caused by a high permeable filter cake, which commonly has a long penetration distance of slurry in sands. A column system with a height of 680 mm and a diameter of 300 mm was developed to model pressurized slurry infiltration in sands. Pressure transducers were installed to estimate the hydraulic conductivity of the filter cake during slurry infiltration. The electrical conductivity of the leachate of collected samples was measured. Results show that the majority of fine particles in slurry are within the range 100–300 mm into the sand specimen. The time for forming an impermeable filter cake is about 300 s, which indicates the impermeable filter cake is hard to form during the excavation.

The stability of the tunnel face excavated by slurry shield is mainly dependent on pressurized bentonite slurry. Slurry infiltration in pervious strata can partly explain the mechanism of the stability of the tunnel face. In this sense, the topic of the manuscript was significant.

一种模拟膨润土泥浆在砂土中渗透的试验装置

目的:泥水盾构掘进时通过加压泥浆维持开挖面稳定,泥浆中的小颗粒渗入土体,大颗粒在土体表面堆积形成泥膜。本文研究泥浆的渗透行为和泥膜的渗透系数,提高对泥水盾构维持开挖面稳定机理的认识。
方法:1. 通过渗透柱试验模拟泥浆在砂土中的渗透;2. 通过土体电导率的测定和电镜扫描,观测泥浆在渗透距离内的分布情况;3. 假设泥膜厚度不变,通过孔压和渗流量观测泥膜渗透系数随时间的变化情况。
结论:1. 在泥浆的渗透距离内,泥浆含量沿着渗透方向以对数形式降低,大部分泥浆的细小颗粒集中在约100-300 mm的区域内,这个区域的大小与泥浆压力成正比;2. 低渗透性泥膜形成时间约5 mim,泥水盾构掘进过程中,开挖面上来不及形成不透水泥膜。

关键词:渗透柱;泥浆渗透;隧道盾构;泥膜;渗透系数

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Anagnostou, G., Kovári, K., 1994. The face stability of slurry-shield-driven tunnels. Tunneling and Underground Space Technology, 9(2):165-174.

[2]Anagnostou, G., Kovári, K., 1996. Face stability in slurry and EPB shield tunneling. Tunnels and Tunnelling, 28(12):27-29.

[3]Anagnostou, G., Rizos, D., 2009. Geotechnical and contractual aspects of urban tunneling with closed shield. ITA-AITES World Tunnel Congress “Safe Tunnelling for the City and Environment”, Budapest, Hungary.

[4]ASTM (American Society for Testing and Materials), 2006. Standard Test Method for Permeability of Granular Soils (Constant Head), ASTM D2434-06. ASTM, West Conshohocken, PA, USA.

[5]ASTM (American Society for Testing and Materials), 2011. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM D2487-11. ASTM, West Conshohocken, PA, USA.

[6]Broere, W., 2001. Tunnel Face Stability & New CPT Application. PhD Thesis, Delft University of Technology, Delft, the Netherlands.

[7]Broere, W., van Tol, A.F., 2000. Influence of infiltration and groundwater flow on tunnel face stability. Geotechnical Aspects of Underground Construction in Soft Ground, 1:339-344.

[8]Chen, R.P., Chen, Y.M., Xu, W., 2010. Measurement of electrical conductivity of pore water in saturated sandy soils using time domain reflectometry (TDR) measurements. Canadian Geotechnical Journal, 47(2):197-206.

[9]Chen, Y.M., Wang, H.L., Chen, R.P., 2014. A newly designed TDR probe for soils with high electrical conductivities. Geotechnical Testing Journal, 37(1):36-45.

[10]Cui, Y., Duong, T.V., Tang, A.M., et al., 2013. Investigation of the hydro-mechanical behaviour of fouled ballast. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(4):244-255.

[11]Ferré, P.A., Knight, J.H., Rudolph, D.L., 1998. The specimen area of conventional and alternative time domain reflectometry probes. Water Resources Research, 34(11):2971-2979.

[12]Fritz, P., 2007. Additives for slurry shields in highly permeable ground. Rock Mechanics and Rock Engineering, 40(1):81-95.

[13]Fritz, P., Stengele, R.H., Heinz, A., 2002. Modified bentonite slurries for slurry shields in highly permeable soils. Fourth International Symposium Geotechnical Aspects of Underground Construction in Soft Ground, Toulouse, France.

[14]Gouet-Kaplan, M., Berkowitz, B., 2011. Measurements of interactions between resident and infiltrating water in a lattice micromodel. Vadose Zone Journal, 10(2):624-633.

[15]Huang, F., Yang, X., Zhao, L., 2012. Upper bound solution of supporting pressure for a shallow square. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(4):284-292.

[16]Kim, S.H., Tonon, F., 2010. Face stability and required support pressure for TBM driven tunnels with ideal face membrane–drained case. Tunnelling and Underground Space Technology, 25(5):526-542.

[17]Kovács, G., 1981. Developments in Water Science–Seepage Hydraulics. Elsevier, Amsterdam, the Netherland, p.349-379.

[18]Krause, T., 1987. Schildvortrieb Mit Flüssigkeits und Erd-gestützter Ortsbrust. PhD Thesis, Technischen Universität Carolo-Wilhelmina, Braunschweig, Germany (in German).

[19]Liu, X., Yuan, D., 2014. An in-situ slurry fracturing test for slurry shield tunneling. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(7):465-481.

[20]Min, F., Zhu, W., Han, X.R., 2013. Filter cake formation for slurry shield tunneling in highly permeable sand. Tunnelling and Underground Space Technology, 38:423-430.

[21]Vanclooster, M., Mallants, D., Vanderborght, J., 1995. Monitoring solute transport in a multi-layered sandy lysimeter using time domain reflectometry. Soil Science Society of America Journal, 59(2):337-344.

[22]Wang, G., Cai, J., 2008. Analysis on funnel viscosity of slurry used in slurry balanced shield machines. Tunnel Construction, 28(6):645-649 (in Chinese).

[23]Ward, A.L., Kachanoski, R.G., Elrick, D.E., 1994. Laboratory measurements of solute transport using time domain reflectometry. Soil Science Society of America Journal, 58(4):1031-1039.

[24]Yeo, S., Shackelford, C.D., Evans, J.C., 2005. Consolidation and hydraulic conductivity of nine model soil-bentonite backfills. Journal of Geotechnical and Geoenvironmental Engineering, 131(10):1189-1198.

[25]Zhang, F., Zhu, H., Fu, D., 2004. Shield Tunnelling Method. China Communication Press, Beijing, China, p.192-194 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE