Full Text:   <3269>

Summary:  <2943>

CLC number: TM912.1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-03-09

Cited: 0

Clicked: 5681

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xi-ming Cheng

http://orcid.org/0000-0001-5933-2630

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2017 Vol.18 No.4 P.256-267

http://doi.org/10.1631/jzus.A1600251


Lithium-ion battery state-of-charge estimation based on deconstructed equivalent circuit at different open-circuit voltage relaxation times


Author(s):  Xi-ming Cheng, Li-guang Yao, Michael Pecht

Affiliation(s):  Collaborative Innovation Center for Electric Vehicles in Beijing, National Engineering Laboratory for Electric Vehicles, Department of Vehicular Engineering, Beijing Institute of Technology, Beijing 100081, China; more

Corresponding email(s):   cxm2004@bit.edu.cn

Key Words:  Lithium-ion batteries, Open-circuit voltage (OCV), State-of-charge (SOC), Recursive least squares (RLS), Extended Kalman filter (EKF)


Xi-ming Cheng, Li-guang Yao, Michael Pecht. Lithium-ion battery state-of-charge estimation based on deconstructed equivalent circuit at different open-circuit voltage relaxation times[J]. Journal of Zhejiang University Science A, 2017, 18(4): 256-267.

@article{title="Lithium-ion battery state-of-charge estimation based on deconstructed equivalent circuit at different open-circuit voltage relaxation times",
author="Xi-ming Cheng, Li-guang Yao, Michael Pecht",
journal="Journal of Zhejiang University Science A",
volume="18",
number="4",
pages="256-267",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1600251"
}

%0 Journal Article
%T Lithium-ion battery state-of-charge estimation based on deconstructed equivalent circuit at different open-circuit voltage relaxation times
%A Xi-ming Cheng
%A Li-guang Yao
%A Michael Pecht
%J Journal of Zhejiang University SCIENCE A
%V 18
%N 4
%P 256-267
%@ 1673-565X
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600251

TY - JOUR
T1 - Lithium-ion battery state-of-charge estimation based on deconstructed equivalent circuit at different open-circuit voltage relaxation times
A1 - Xi-ming Cheng
A1 - Li-guang Yao
A1 - Michael Pecht
J0 - Journal of Zhejiang University Science A
VL - 18
IS - 4
SP - 256
EP - 267
%@ 1673-565X
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600251


Abstract: 
Equivalent circuit model-based state-of-charge (SOC) estimation has been widely studied for power lithium-ion batteries. An appropriate relaxation period to measure the open-circuit voltage (OCV) should be investigated to both ensure good SOC estimation accuracy and improve OCV test efficiency. Based on a battery circuit model, an SOC estimator in the combination of recursive least squares (RLS) and the extended Kalman filter is used to mitigate the error voltage between the measurement and real values of the battery OCV. To reduce the iterative computation complexity, a two-stage RLS approach is developed to identify the model parameters, the battery circuit of which is divided into two simple circuits. Then, the measurement values of the OCV at varying relaxation periods and three temperatures are sampled to establish the relationships between SOC and OCV for the developed SOC estimator. Lastly, dynamic stress test and federal test procedure drive cycles are used to validate the model-based SOC estimation method. Results show that the relationships between SOC and OCV at a short relaxation time, such as 5 min, can also drive the SOC estimator to produce a good performance.

This paper shows original work towards development of a two stage process to estimate the EC model parameters and determine battery SOC. The circuit deconstruction method was validated with DST and FTP test cycles. The uniqueness of the work lies in the reduction in error in estimation of SOC and also reducing in the OCV test time. The authors have followed a reasonable scientific approach to explain the model development, theory and results.

不同开路电压松弛时间下基于等效电路解构的锂离子电池荷电状态估计

目的:开路电压是基于模型的电池荷电状态估计的必要参数,其测试耗时大、效率低。本文旨在测试各种电压松弛时间的荷电状态-开路电压关系,研究其对开路电压法和等效电路模型的荷电状态估计准确度的影响,提高开路电压测试效率。
创新点:1. 通过电路解构方法,将二阶阻容电路分解为简单路,运用二阶段递推最小二乘法辨识电路模型的参数;2. 基于递推最小二乘法和卡尔曼滤波算法,建立电路参数辨识和荷电状态估计的的联合自适应算法,研究电池电压松弛时间对基于等效电路模型的荷电状态估计的影响。
方法:1. 通过电路解构技术和理论推导,构建辨识二阶阻容等效电路参数的二阶段递推最小二乘法辨识方法(图2和公式(4)~(9));2. 将二阶段递推最小二乘法和扩展卡尔曼滤波器集成,建立适应工况变化的电池模型参数辨识和状态估计的联合算法(图3);3. 通过电池测试,建立多温度和多电压松弛时间的荷电状态与开路电压的关系,驱动自适应联合算法,获得既保证荷电状态估计准确度,又缩短开路电压测试时间的电压松弛时间。
结论:1. 二阶段递推最小二乘法既能简化矩阵计算,又能够保证电路参数的辨识非负性;2. 联合自适应算法能够适应工况变化辨识模型参数和估计荷电状态;3. 联合自适应算法的结果表明, 5 min的电压松弛时间既能保证荷电状态估计性能,又能极大地提高开路电压测试效率。

关键词:锂离子电池;开路电压;荷电状态;递推最小二乘法;扩展卡尔曼滤波器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aung, H., Low, K.S., Goh, S.T., 2015. State-of-charge estimation of lithium-ion battery using square root spherical unscented Kalman filter (Sqrt-UKFST) in nanosatellite. IEEE Transactions on Power Electronics, 30(9):4774-4783.

[2]Cheng, X., Yao, L., Xing, Y., et al., 2016. Novel parametric circuit modeling for Li-ion batteries. Energies, 9(7):539-553.

[3]Chui, C.K., Chen, G., 2009. Kalman Filtering with Real-time Applications. Springer, Berlin, Germany, p.181-184.

[4]Dai, H., Zhang, X., Wei, X., et al., 2013. Cell-BMS validation with a hardware-in-the-loop simulation of lithium-ion battery cells for electric vehicles. International Journal of Electrical Power and Energy Systems, 52:174-184.

[5]Ecker, M., Gerschler, J.B., Vogel, J., et al., 2012. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data. Journal of Power Sources, 215:248-257.

[6]Einhorn, M., Conte, F.V., Kral, C., et al., 2013. Comparison, selection, and parameterization of electrical battery models for automotive applications. IEEE Transactions on Power Electronics, 28(3):1429-1437.

[7]Fleischer, C., Waag, W., Heyn, H.M., et al., 2014. On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models: Part 1. Requirements, critical review of methods and modeling. Journal of Power Sources, 260:276-291.

[8]Haykin, S., 2001. Kalman Filtering and Neural Networks. John & Wiley Inc., New York, USA, p.123-174.

[9]Hu, X., Sun, F., Cheng, X., 2011. Recursive calibration for a lithium iron phosphate battery for electric vehicles using extended Kalman filtering. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(11):818-825.

[10]Huria, T., Ludovici, G., Lutzemberger, G., 2014. State of charge estimation of high power lithium iron phosphate cells. Journal of Power Sources, 249:92-102.

[11]Jackey, R., Saginaw, M., Sanghvi, P., et al., 2013. Battery model parameter estimation using a layered technique: an example using a lithium iron phosphate cell. SAE Technical Paper, 2013-01-1547.

[12]Khan, M.R., Mulder, G., van Mierlo, J., 2014. An online framework for state of charge determination of battery systems using combined system identification approach. Journal of Power Sources, 246:629-641.

[13]Lee, J., Nam, O., Cho, B.H., 2007. Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering. Journal of Power Sources, 174(1):9-15.

[14]Lee, S., Kim, J., 2015. Discrete wavelet transform-based denoising technique for advanced state-of-charge estimator of a lithium-ion battery in electric vehicles. Energy, 83:462-473.

[15]Leng, F., Tan, C.M., Yazami, R., et al., 2014. A practical framework of electrical based online state-of-charge estimation of lithium ion batteries. Journal of Power Sources, 255:423-430.

[16]Mastali, M., Vazquez-Arenas, J., Fraser, R., et al., 2013. Battery state of the charge estimation using Kalman filtering. Journal of Power Sources, 239:294-307.

[17]Northrop, P.W.C., Suthar, B., Ramadesigan, V., et al., 2014. Efficient simulation and reformulation of lithium-ion battery models for enabling electric transportation. Journal of the Electrochemical Society, 161(8):E3149-E3157.

[18]Pei, L., Wang, T., Lu, R., et al., 2014. Development of a voltage relaxation model for rapid open-circuit voltage prediction in lithium-ion batteries. Journal of Power Sources, 253:412-418.

[19]Petzl, M., Danzer, M.A., 2013. Advancements in OCV measurement and analysis for lithium-ion batteries. IEEE Transactions on Energy Conversion, 28(3):675-681.

[20]Piller, S., Perrin, M., Jossen, A., 2001. Methods for state-of-charge determination and their applications. Journal of Power Sources, 96(1):113-120.

[21]Plett, G.L., 2004. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation. Journal of Power Sources,134(2):277-292.

[22]Plett, G.L., 2006. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Introduction and state estimation. Journal of Power Sources, 161(2):1356-1368.

[23]Roscher, M.A., Assfalg, J., Bohlen, O.S., 2011. Detection of utilizable capacity deterioration in battery systems. IEEE Transactions on Vehicle Technology, 60(1):98-103.

[24]Sayed, A.H., 2008. Adaptive Filters. John Wiley & Sons, Inc., Hoboken, New Jersey, USA, p.501-508.

[25]Seaman, A., Dao, T.S., McPhee, J., 2014. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. Journal of Power Sources, 256:410-423.

[26]Sepasi, S., Ghorbani, R., Liaw, B.Y., 2014. Improved extended Kalman filter for state of charge estimation of battery pack. Journal of Power Sources, 255:368-376.

[27]Speirs, J., Contestabile, M., Houari, Y., et al., 2014. The future of lithium availability for electric vehicle batteries. Renewable and Sustainable Energy Reviews, 35:183-193.

[28]Sun, F., Hu, X., Zou, Y., et al., 2011. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles. Energy, 36(5):3531-3540.

[29]Waag, W., Fleischer, C., Sauer, D.U., 2014. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. Journal of Power Sources, 258:321-339.

[30]Wang, J., Guo, J., Ding, L., 2009. An adaptive Kalman filtering based state of charge combined estimator for electric vehicle battery pack. Energy Conversion and Management, 50(12):3182-3186.

[31]Xia, B., Wang, H., Tian, Y., et al., 2015. State of charge estimation of lithium-ion batteries using an adaptive cubature Kalman filter. Energies, 8(6):5916-5936.

[32]Xing, Y., He, W., Pecht, M., et al., 2014. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Applied Energy, 113:106-115.

[33]Xiong, R., Sun, F., Chen, Z., et al., 2013a. A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles. Applied Energy, 113:463-476 .

[34]Xiong, R., Sun, F., He, H., et al., 2013b. A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles. Energy, 63:295-308.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE