CLC number: TK41
On-line Access: 2018-03-05
Received: 2017-09-06
Revision Accepted: 2018-01-25
Crosschecked: 2018-02-09
Cited: 0
Clicked: 27791
Theofilos Gkinis, Ramin Rahmani, Homer Rahnejat, Martin O’Mahony. Heat generation and transfer in automotive dry clutch engagement[J]. Journal of Zhejiang University Science A, 2018, 19(3): 175-188.
@article{title="Heat generation and transfer in automotive dry clutch engagement",
author="Theofilos Gkinis, Ramin Rahmani, Homer Rahnejat, Martin O’Mahony",
journal="Journal of Zhejiang University Science A",
volume="19",
number="3",
pages="175-188",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1700481"
}
%0 Journal Article
%T Heat generation and transfer in automotive dry clutch engagement
%A Theofilos Gkinis
%A Ramin Rahmani
%A Homer Rahnejat
%A Martin O’Mahony
%J Journal of Zhejiang University SCIENCE A
%V 19
%N 3
%P 175-188
%@ 1673-565X
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1700481
TY - JOUR
T1 - Heat generation and transfer in automotive dry clutch engagement
A1 - Theofilos Gkinis
A1 - Ramin Rahmani
A1 - Homer Rahnejat
A1 - Martin O’Mahony
J0 - Journal of Zhejiang University Science A
VL - 19
IS - 3
SP - 175
EP - 188
%@ 1673-565X
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1700481
Abstract: Dynamic behaviour of automotive dry clutches depends on the frictional characteristics of the contact between the friction lining material, the flywheel, and the pressure plate during the clutch engagement process. During engagement due to high interfacial slip and relatively high contact pressures, generated friction gives rise to contact heat, which affects the material behaviour and the associated frictional characteristics. In practice excess interfacial slipping and generated heat during torque transmission can result in wear of the lining, thermal distortion of the friction disc, and reduced useful life of the clutch. This paper provides measurement of friction lining characteristics for dry clutches for new and worn state under representative operating conditions pertaining to interfacial slipping during clutch engagement, applied contact pressures, and generated temperatures. An analytical thermal partitioning network model of the clutch assembly, incorporating the flywheel, friction lining, and the pressure plate is presented, based upon the principle of conservation of energy. The results of the analysis show a higher coefficient of friction for the new lining material which reduces the extent of interfacial slipping during clutch engagement, thus reducing the frictional power loss and generated interfacial heating. The generated heat is removed less efficiently from worn lining. This might be affected by different factors observed such as the reduced lining thickness and the reduction of density of the material but mainly because of poorer thermal conductivity due to the depletion of copper particles in its microstructure as the result of wear. The study integrates frictional characteristics, microstructural composition, mechanisms of heat generation, effect of lining wear, and heat transfer in a fundamental manner, an approach not hitherto reported in literature.
I am pleased with the extend of the research and diversity of the topics involved. For future such investigations, a validation (or part validation due to complexity) of the theoretical model with practical thermal measurements is recommended. Following this, an improved design showing clear impact of the developed model in real world clutch design, could be considered.
[1]Abdullah OI, Schlattmann J, 2013. Effect of band contact on the temperature distribution for dry friction clutch. Tribology in Industry, 35(4):317-329.
[2]Akhtar MMJ, Abdullah OI, Schlattmann J, 2013. Transient thermoelastic analysis of dry clutch system. Machine Design, 5(4):141-150.
[3]Arani AAA, Shahmohamadi P, Sheikhzadeh GA, et al., 2013. Convective heat transfer from a heated rotating disk at arbitrary inclination angle in laminar flow. International Journal of Engineering-Transactions B: Applications, 26(8):865-874.
[4]Bemporad A, Borrelli F, Glielmo L, et al., 2001. Hybrid control of dry clutch engagement. Control Conference (ECC) 2001 European, p.635-639.
[5]Bezzazi M, Khamlichi A, Jabbouri A, et al., 2007. Experimental characterization of frictional behaviour of clutch facings using pin-on-disk machine. Materials and Design, 28(7):2148-2153.
[6]Centea D, Rahnejat H, Menday MT, 1999. The influence of the interface coefficient of friction upon the propensity to judder in automotive clutches. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 213(3):245-258.
[7]Centea D, Rahnejat H, Menday MT, 2001. Non-linear multi-body dynamic analysis for the study of clutch torsional vibrations (judder). Applied Mathematical Modelling, 25(3):177-192.
[8]Czél B, Varadi K, Albers A, et al., 2009. FE thermal analysis of a ceramic clutch. Tribology International, 42(5):714-723.
[9]El-Sherbiny M, Newcomb TP, 1976. Temperature distributions in automotive dry clutches. Proceedings of the Institution of Mechanical Engineers, 190(1):359-365.
[10]Gkinis T, Rahmani R, Rahnejat H, 2016. Influence of clutch lining frictional characteristics upon cold and hot take-up judder. 3rd Biennial International Conference on Powertrain Modelling and Control.
[11]Gkinis T, Rahmani R, Rahnejat H, 2017. Effect of clutch lining frictional characteristics on take-up judder. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multibody Dynamics, 231(3):493-503.
[12]Glielmo L, Vasca F, 2000. Optimal control of dry clutch engagement. SAE 2000 World Congress, SAE Paper No. 2000-01-0837.
[13]Humphrey E, Gkinis T, Morris NJ, et al., 2016. Clutch lining frictional characteristics under thermal tribodynamic conditions. 3rd Biennial International Conference on Powertrain Modelling and Control.
[14]Khamlichi A, Bezzazi M, Parron Vera MA, 2003. Optimizing the thermal properties of clutch facings. Journal of Materials Processing Technology, 142(3):634-642.
[15]Lee SW, Jang YH, 2009. Frictionally excited thermoelastic instability in a thin layer of functionally graded material sliding between two half-planes. Wear, 267(9-10):1715-1722.
[16]Lienhard JH, 2013. A Heat Transfer Textbook. Courier Corporation, North Chelmsford, USA.
[17]Marklund P, Larsson R, 2008. Wet clutch friction characteristics obtained from simplified pin on disc test. Tribology International, 41(9-10):824-830.
[18]Menday M, Rahnejat H, 2010. Friction lining characteristics and the clutch take up judder phenomenon with manual transmission. In: Rahnejat H (Ed.), Tribology and Dynamics of Engine and Powertrain: Fundamentals, Applications and Future Trends. Woodhead Publishing Ltd., Cambridge, UK, p.680-702.
[19]Mills AF, 1999. Basic Heat and Mass Transfer. Pearson College Div.
[20]Morris N, Rahmani R, Rahnejat H, et al., 2013. Tribology of piston compression ring conjunction under transient thermal mixed regime of lubrication. Tribology International, 59:248-258.
[21]Newcomb TP, Spurr RT, 1973. Temperature as a criterion of failure in brakes and clutches. First European Tribology Congress, Proceedings of the Institution of Mechanical Engineers, p.71.
[22]Olver AV, 1991. Testing transmission lubricants: the importance of thermal response. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 205(1):35-44.
[23]Paouris L, Rahmani R, Theodossiades S, et al., 2016. An analytical approach for prediction of elastohydrodynamic friction with inlet shear heating and starvation. Tribology Letters, 64(1):10.
[24]Pei YC, Chatwin C, He L, et al., 2017. A thermal boundary control method for a flexible thin disk rotating over critical and supercritical speeds. Meccanica, 52(1-2):383-401.
[25]Pisaturo M, Senatore A, 2016. Simulation of engagement control in automotive dry-clutch and temperature field analysis through finite element model. Applied Thermal Engineering, 93:958-966.
[26]Quinn TFJ, 1984. The role of wear in the failure of common tribosystems. Wear, 100(1-3):399-436.
[27]Rabeih EMA, Crolla DA, 1996. Intelligent control of clutch judder and shunt phenomena in vehicle drivelines. International Journal of Vehicle Design, 17(3):318-332.
[28]Shah RK, Bhatti MS, 1987. Handbook of Single-phase Convective Heat Transfer. Wiley-Interscience.
[29]Tonazzi D, Massi F, Baillet L, et al., 2015. Experimental and numerical analysis of frictional contact scenarios: from macro stick-slip to continuous sliding. Meccanica, 50(3):649-664.
[30]Yang LK, Li HY, Ahmadian M, et al., 2015. Analysis of the influence of engine torque excitation on clutch judder. Journal of Vibration and Control, 23(4):645-655.
[31]Zhao S, Hilmas GE, Dharani LR, 2008. Behavior of a composite multidisk clutch subjected to mechanical and frictionally excited thermal load. Wear, 264(11-12):1059-1068.
Open peer comments: Debate/Discuss/Question/Opinion
<1>