Full Text:   <2439>

Summary:  <1839>

CLC number: U445

On-line Access: 2020-05-11

Received: 2019-06-16

Revision Accepted: 2019-11-08

Crosschecked: 2020-03-17

Cited: 0

Clicked: 3434

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jin-feng Wang

https://orcid.org/0000-0002-9099-818x

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2020 Vol.21 No.5 P.382-391

http://doi.org/10.1631/jzus.A1900213


Geometric state transfer method for construction control of a large-segment steel box girder with hoisting installation


Author(s):  Jin-feng Wang, Hua-wei Xiang, Jiang-tao Zhang, Tian-mei Wu, Rong-qiao Xu

Affiliation(s):  College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   wangjinfeng@zju.edu.cn

Key Words:  Large-segment steel box girder, Offshore hoisting, Construction control, Geometric state, Transfer matrix


Jin-feng Wang, Hua-wei Xiang, Jiang-tao Zhang, Tian-mei Wu, Rong-qiao Xu. Geometric state transfer method for construction control of a large-segment steel box girder with hoisting installation[J]. Journal of Zhejiang University Science A, 2020, 21(5): 382-391.

@article{title="Geometric state transfer method for construction control of a large-segment steel box girder with hoisting installation",
author="Jin-feng Wang, Hua-wei Xiang, Jiang-tao Zhang, Tian-mei Wu, Rong-qiao Xu",
journal="Journal of Zhejiang University Science A",
volume="21",
number="5",
pages="382-391",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1900213"
}

%0 Journal Article
%T Geometric state transfer method for construction control of a large-segment steel box girder with hoisting installation
%A Jin-feng Wang
%A Hua-wei Xiang
%A Jiang-tao Zhang
%A Tian-mei Wu
%A Rong-qiao Xu
%J Journal of Zhejiang University SCIENCE A
%V 21
%N 5
%P 382-391
%@ 1673-565X
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1900213

TY - JOUR
T1 - Geometric state transfer method for construction control of a large-segment steel box girder with hoisting installation
A1 - Jin-feng Wang
A1 - Hua-wei Xiang
A1 - Jiang-tao Zhang
A1 - Tian-mei Wu
A1 - Rong-qiao Xu
J0 - Journal of Zhejiang University Science A
VL - 21
IS - 5
SP - 382
EP - 391
%@ 1673-565X
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1900213


Abstract: 
This paper aims to address the problem of geometric state control of large-segment steel box girders in offshore hoisting during the construction of large-span bridges. First, the geometric state control indexes of a large-segment steel box girder are determined, such as the manufacturing parameters of the top and bottom slabs, the width of the annular joint, and the support position. Second, the geometric state equations and state transfer matrixes of large-segment steel box girders under different conditions are deduced by taking the mileage and elevation of control points as basic state variables. In application of the geometric state transfer method in the construction control of the Hong Kong-Zhuhai-Macao Bridge, the width of the annular joint and the position parameters for the support of the large-segment steel box girder are predicted precisely. Moreover, the manufacturing parameters of the top and bottom slabs of the steel box girders are calculated reliably. The measured values show that the width of the annular joint is basically the same with the difference of less than 2 mm, the eccentricity of bridge support is less than 20 mm, and the elevation error of the bridge deck is within −10 mm to +15 mm, which meets the construction accuracy. Using the geometric state transfer method, the rapid and accurate installation of the Hong Kong-Zhuhai-Macao Bridge has been realized, demonstrating that the precise control of the geometric state of a steel box girder with ectopic installation and multi-state transition can be realized by using the geometric state transfer method.

基于几何状态传递的大节段钢箱梁吊装施工控制

目的:采用吊装施工的大节段钢箱梁属于整孔异位安装,其几何状态从工厂到桥址不断转换、几何关系复杂,且对成桥梁面标高、海上大节段环缝对接以及桥梁支座定位均有非常高的精度要求. 本文研究基于几何状态传递的大节段钢箱梁吊装施工控制方法,以解决分阶段施工桥梁在施工过程中的几何状态控制难题.
创新点:1. 确定大节段钢箱梁几何状态控制指标,即顶底板下料参数、大节段环缝宽度和支座定位; 2. 提出以钢箱梁控制点的里程和高程作为基本状态变量,推导大节段钢箱梁各状态下的几何状态方程和状态传递矩阵.
方法:1. 针对大节段钢箱梁吊装施工特点,进行状态分析,提出其施工过程的典型几何状态,即设计成桥状态、无应力状态、工厂组拼状态和安装状态; 2. 通过理论推导,构建各几何状态间的状态传递方程,得出大节段钢箱梁吊装施工时结构的几何状态变化关系; 3. 基于上述推导的方程,计算大节段钢箱梁下料参数、大节段钢箱梁环缝宽度和支座定位参数,以指导施工; 4. 在施工过程中对桥梁结构实际响应数据进行测试,并将实测值与理论值进行分析对比,以验证本文方法的可行性和有效性.
结论:1. 采用本文方法实现了港珠澳大桥大节段钢箱梁有应力状态下顶底板环缝宽度差值在2 mm以内、桥梁支座就位后的偏心距在20 mm以内以及成桥梁面高程误差范围为−10 mm~+15 mm,满足控制精度要求. 2. 以桥梁结构控制点的里程和高程作为基本状态变量的几何状态控制方法可实现桥梁施工过程中复杂几何关系传递的控制. 3. 本文方法具有通用性,可进一步推广应用于逐孔顶推、节段拼装等异位安装以及多状态转换的桥梁施工过程的几何状态控制.

关键词:大节段钢箱梁; 海上吊装; 施工控制; 几何状态; 传递矩阵

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Arici M, Granata MF, 2007. Analysis of curved incrementally launched box concrete bridges using the Transfer Matrix Method. Bridge Structures, 3(3-4):165-181.

[2]Breen JE, 1985. Controlling twist in precast segmental concrete bridges. PCI Journal, 30(4):86-111.

[3]Chen DW, Zheng XG, Xiang HF, 1993. A construction control system for P.C. cable-stayed bridges. China Civil Engineering Journal, 26(1):1-11 (in Chinese).

[4]Li CX, He J, Dong CW, et al., 2015. Control of self-adaptive unstressed configuration for incrementally launched girder bridges. Journal of Bridge Engineering, 20(10):04014105.

[5]Li Q, Bu YZ, Zhang QH, 2009. Whole-procedure adaptive construction control system based on geometry control method. China Civil Engineering Journal, 42(7):69-77 (in Chinese).

[6]Lin JP, Wang JF, Chen CL, et al., 2014. Geometric shape control of trough steel girder composite bridge constructed by incremental launching method. Bridge Construction, 44(4):102-106 (in Chinese).

[7]Lin YP, 1983. Application of Kalman’s filtering method to cable stayed bridge construction. China Civil Engineering Journal, 16(3):7-14 (in Chinese).

[8]Meng FC, Liu MH, Wu WS, et al., 2014. The design philosophy and bridge’s technical innovation of Hong Kong-Zhuhai-Macau Bridge. Engineering Sciences, 17(1):27-35 (in Chinese).

[9]Muller J, 1975. Ten years of experience in precast segmental construction. PCI Journal, 20(1):28-61.

[10]Rosignoli M, 1997. Solution of the continuous beam in launched bridges. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 122(4):390-398.

[11]Seki F, Tanaka S, 1991. Construction control system for cable-stayed bridges. Proceedings of IABSE, 64:286-287.

[12]http://doi.org/10.5169/seals-49315

[13]Taylor PR, 1986. Annacis bridge superstructure–a major composite cable-stayed bridge. Annual Conference RTAC, p.89-105.

[14]Thomson WT, 1950. Matrix solution for the vibration of non-uniform beams. Journal of Applied Mechanics, 17: 337-339.

[15]Wada K, Takano H, Tomita N, et al., 1991. Construction of the Yokohama Bay Bridge superstructure. IABSE Symposium Leningrad, 64:177-182.

[16]http://doi.org/10.5169/seals-49293

[17]Wang JF, Lin JP, Xu RQ, 2015. Incremental launching construction control of long multispan composite bridges. Journal of Bridge Engineering, 20(11):04015006.

[18]Yan DH, Chen CS, Dong DF, et al., 2012. Control of self-adaptive zero-stress configuration for long-span cable-stayed bridge with steel main girders. China Journal of Highway and Transport, 25(1):55-58 (in Chinese).

[19]Zhong WX, Liu YF, Ji Z, 1992. Control and adjustment of cable tension in the construction of cable-stayed bridge. China Civil Engineering Journal, 25(3):9-15 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE