Full Text:   <307>

Summary:  <16>

CLC number: 

On-line Access: 2022-07-19

Received: 2021-09-17

Revision Accepted: 2022-01-17

Crosschecked: 2022-07-19

Cited: 0

Clicked: 238

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Guo-dong SA

https://orcid.org/0000-0001-7803-2270

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2022 Vol.23 No.7 P.527-542

http://doi.org/10.1631/jzus.A2100461


A comparison of sensitivity indices for tolerance design of a transmission mechanism


Author(s):  Zhen-yu LIU, Han-chao XU, Guo-dong SA, Yu-feng LYU, Jian-rong TAN

Affiliation(s):  State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   sgd@zju.edu.cn

Key Words:  Transmission mechanism, Sensitivity analysis, Tolerance allocation, Hybrid simulation, Polynomial chaos expansion (PCE)


Zhen-yu LIU, Han-chao XU, Guo-dong SA, Yu-feng LYU, Jian-rong TAN. A comparison of sensitivity indices for tolerance design of a transmission mechanism[J]. Journal of Zhejiang University Science A, 2022, 23(7): 527-542.

@article{title="A comparison of sensitivity indices for tolerance design of a transmission mechanism",
author="Zhen-yu LIU, Han-chao XU, Guo-dong SA, Yu-feng LYU, Jian-rong TAN",
journal="Journal of Zhejiang University Science A",
volume="23",
number="7",
pages="527-542",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2100461"
}

%0 Journal Article
%T A comparison of sensitivity indices for tolerance design of a transmission mechanism
%A Zhen-yu LIU
%A Han-chao XU
%A Guo-dong SA
%A Yu-feng LYU
%A Jian-rong TAN
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 7
%P 527-542
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2100461

TY - JOUR
T1 - A comparison of sensitivity indices for tolerance design of a transmission mechanism
A1 - Zhen-yu LIU
A1 - Han-chao XU
A1 - Guo-dong SA
A1 - Yu-feng LYU
A1 - Jian-rong TAN
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 7
SP - 527
EP - 542
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2100461


Abstract: 
sensitivity analysis is used to quantify the contribution of the uncertainty of input variables to the uncertainty of systematic output responses. For tolerance design in manufacturing and assembly, sensitivity analysis is applied to help designers allocate tolerances optimally. However, different sensitivity indices derived from different sensitivity analysis methods will always lead to conflicting results. It is necessary to find a sensitivity index suitable for tolerance allocation to transmission mechanisms so that the sensitivity results can truly reflect the effects of tolerances on kinematic and dynamic performances. In this paper, a variety of sensitivity indices are investigated and compared based on hybrid simulation. Firstly, the hybrid simulation model of the crank-slider mechanism is established. Secondly, samples of the kinematic and dynamic responses of the mechanism with joint clearances and link length errors are obtained, and the surrogate model established using polynomial chaos expansion (PCE). Then, different sensitivity indices are calculated based on the PCE model and are further used to evaluate the effect of joint clearances and link length errors on the output response. Combined with the tolerance-cost function, the corresponding tolerance allocation schemes are obtained based on different sensitivity analysis results. Finally, the kinematic and dynamic responses of the mechanism adopting different tolerance allocation schemes are simulated, and the sensitivity index corresponding to the optimal response is determined as the most appropriate index.

面向传动机构公差设计的灵敏度指标对比研究

作者:刘振宇1,3,徐汉超4,撒国栋2,3,吕玉峰3,谭建荣1,3
机构:1浙江大学,计算机辅助设计与图形学国家重点实验室,中国杭州,310027;2浙江大学,宁波研究院,中国宁波,315100;3浙江大学,机械工程学院,中国杭州,310027;4浙江大学,工程师学院,中国杭州,310027
目的:在制造和装配的公差设计阶段,应用灵敏度分析方法可以帮助设计人员优化分配公差。然而,不同的灵敏度分析方法得出的灵敏度指标往往导致结果相互矛盾。因此,需要通过对比找到一种适合传动机构公差分配的灵敏度指标,使灵敏度结果能够真实反映传动机构公差对运动学和动力学性能的影响。
创新点:1.建立了一种传动机构的混合仿真模型,既降低了试验成本,也保证了实验精度;2.提出了一种基于传动机构混合仿真模型的灵敏度指标对比方法。
方法:1.建立曲柄滑块机构的混合仿真模型;2.获得含有铰间隙误差和连杆长度误差机构的运动学和动力学响应样本,并使用多项式混沌展开(PCE)法建立其结构参数与动力学响应的代理模型;3.基于PCE模型计算不同的灵敏度指标,并进一步评估铰间隙和连杆长度误差对输出响应的影响;4.结合公差-成本函数,根据不同的灵敏度分析结果得到相应的公差分配方案;5.对采用不同公差分配方案机构的运动学和动力学响应进行模拟,确定最优响应对应的灵敏度指标为最合适的指标。
结论:1.基于曲柄滑块实验平台的实验数据建立了混合仿真模型,并在降低实验成本和自由控制输入变量的情况下,保证了仿真数据的准确性和可靠性。2.基于混合仿真模型的实验数据,建立了基于PCE法的代理模型进行灵敏度计算,从而显著简化了计算。3.根据灵敏度计算结果和成本-公差函数分配公差,得到了每个灵敏度指标对应的公差方案;通过对各公差方案下机构的运动学和动力学性能进行对比,提出了一种具有工程价值的灵敏度评价新方法。4.与本文其他灵敏度指标相比,Sobol指标可以通过公差分配更好地优化传动机构的运动学和动力学性能。

关键词:传动机构;灵敏度分析;公差分配;混合仿真;混沌多项式展开

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AbbiatiG, MarelliS, TsokanasN, et al., 2021. A global sensitivity analysis framework for hybrid simulation. Mechanical Systems and Signal Processing, 146:106997.

[2]AcharjeeS, ZabarasN, 2007. A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processes. Computers & Structures, 85(5-6):244-254.

[3]AmbayeGA, LemuHG, 2021. Dynamic analysis of spur gear with backlash using ADAMS. Materials Today: Proceedings, 38:2959-2967.

[4]BorgonovoE, 2007. A new uncertainty importance measure. Reliability Engineering & System Safety, 92(6):771-784.

[5]BorgonovoE, CastaingsW, TarantolaS, 2012. Model emulation and moment-independent sensitivity analysis: an application to environmental modelling. Environmental Modelling & Software, 34:105-115.

[6]CaiM, YangJX, WuZT, 2004. Mathematical model of cylindrical form tolerance. Journal of Zhejiang University-SCIENCE, 5(7):890-895.

[7]CaoYL, LiuYS, MaoJ, et al., 2006. 3DTS: a 3D tolerancing system based on mathematical definition. Journal of Zhejiang University-SCIENCE A, 7(11):1810-1818.

[8]CaoYL, MathieuL, JiangJ, 2015. Key research on computer aided tolerancing. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(5):335-340.

[9]CukierRI, FortuinCM, ShulerKE, et al., 1973. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory. Journal of Chemical Physics, 59(8):3873-3878.

[10]DantanJY, BruyereJ, VincentJP, et al., 2008. Vectorial tolerance allocation of bevel gear by discrete optimization. Mechanism and Machine Theory, 43(11):1478-1494.

[11]DarlingtonRB, HayesAF, 2016. Regression Analysis and Linear Models: Concepts, Applications, and Implementation. The Guilford Press, New York, USA, p.8-30.

[12]DubowskyS, DeckJF, CostelloH, 1987. The dynamic modeling of flexible spatial machine systems with clearance connections. Journal of Mechanisms, Transmissions, and Automation in Design, 109(1):87-94.

[13]HainesRS, 1980. A theory of contact loss at resolute joints with clearance. Journal of Mechanical Engineering Science, 22(3):129-136.

[14]HeltonJC, DavisFJ, 2003. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81(1):23-69.

[15]IsukapalliSS, 1999. Uncertainty Analysis of Transport-Transformation Models. PhD Thesis, The State University of New Jersey, Piscataway, USA.

[16]IsukapalliSS, RoyA, GeorgopoulosPG, 2000. Efficient sensitivity/uncertainty analysis using the combined stochastic response surface method and automated differentiation: application to environmental and biological systems. Risk Analysis, 20(5):591-602.

[17]LinKS, ChanKY, LeeJJ, 2018. Kinematic error analysis and tolerance allocation of cycloidal gear reducers. Mechanism and Machine Theory, 124:73-91.

[18]LiuYY, GuoJK, LiBT, et al., 2019. Sensitivity analysis and tolerance design for precision machine tool. Journal of Mechanical Engineering, 55(17):145-152 (in Chinese).

[19]McKayMD, BeckmanRJ, ConoverWJ, 2000. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 42(1):55-61.

[20]MoS, LiZL, LiY, et al., 2011. Concurrent tolerance optimization design based on time value of money. Journal of Machine Design, 28(11):85-89 (in Chinese).

[21]SaltelliA, TarantolaS, 2002. On the relative importance of input factors in mathematical models: safety assessment for nuclear waste disposal. Journal of the American Statistical Association, 97(459):702-709.

[22]SaltelliA, RattoM, AndresT, et al., 2008. Global Sensitivity Analysis: the Primer. John Wiley & Sons Ltd., West Sussex, UK, p.1-165.

[23]SeneviratneLD, EarlesSWE, FennerDN, 1996. Analysis of a four-bar mechanism with a radially compliant clearance joint. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 210(3):215-223.

[24]ShannonCE, 1948. A mathematical theory of communication. The Bell System Technical Journal, 27(3):379-423.

[25]SobolIM, 1993. Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling and Computational Experiments, 1:407-414.

[26]SobolIM, 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1-3):271-280.

[27]SoongK, ThompsonBS, 1990. A theoretical and experimental investigation of the dynamic response of a slider-crank mechanism with radial clearance in the gudgeon-pin joint. Journal of Mechanical Design, 112(2):183-189.

[28]SudretB, 2008. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety, 93(7):964-979.

[29]TianQ, FloresP, LankaraniHM, 2018. A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mechanism and Machine Theory, 122:1-57.

[30]WienerN, 1938. The homogeneous chaos. American Journal of Mathematics, 60(4):897-936.

[31]WienerN, TeichmannT, 1959. Nonlinear problems in random theory. American Institute of Physics, 12(8):52.

[32]ZhouSE, 2019. Assembly Modeling and Accuracy Analysis Method of Complex Product Based on Digital Twin. PhD Thesis, Zhejiang University, Hangzhou, China(in Chinese).

[33]ZieglerP, WartzackS, 2015. A statistical method to identify main contributing tolerances in assemblability studies based on convex hull techniques. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(5):361-370.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE