Full Text:   <939>

Summary:  <380>

Suppl. Mater.: 

CLC number: 

On-line Access: 2022-06-22

Received: 2022-01-24

Revision Accepted: 2022-05-26

Crosschecked: 2022-09-22

Cited: 0

Clicked: 928

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Bate BATE

https://orcid.org/0000-0002-8692-8402

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2022 Vol.23 No.9 P.704-720

http://doi.org/10.1631/jzus.A2200047


Influence of wettability in immiscible displacements with lattice Boltzmann method


Author(s):  Chen ZHOU, Wen-yuan WANG, Ke-xin CHEN, Ze-jian CHEN, Jongwon JUNG, Shuai ZHANG, Yun-min CHEN, Bate BATE

Affiliation(s):  Institute of Geotechnical Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   112177@zju.edu.cn, batebate@zju.edu.cn

Key Words:  Wettability, Porous media, Lattice Boltzmann method (LBM), Multiphase flow


Chen ZHOU, Wen-yuan WANG, Ke-xin CHEN, Ze-jian CHEN, Jongwon JUNG, Shuai ZHANG, Yun-min CHEN, Bate BATE. Influence of wettability in immiscible displacements with lattice Boltzmann method[J]. Journal of Zhejiang University Science A, 2022, 23(9): 704-720.

@article{title="Influence of wettability in immiscible displacements with lattice Boltzmann method",
author="Chen ZHOU, Wen-yuan WANG, Ke-xin CHEN, Ze-jian CHEN, Jongwon JUNG, Shuai ZHANG, Yun-min CHEN, Bate BATE",
journal="Journal of Zhejiang University Science A",
volume="23",
number="9",
pages="704-720",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200047"
}

%0 Journal Article
%T Influence of wettability in immiscible displacements with lattice Boltzmann method
%A Chen ZHOU
%A Wen-yuan WANG
%A Ke-xin CHEN
%A Ze-jian CHEN
%A Jongwon JUNG
%A Shuai ZHANG
%A Yun-min CHEN
%A Bate BATE
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 9
%P 704-720
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200047

TY - JOUR
T1 - Influence of wettability in immiscible displacements with lattice Boltzmann method
A1 - Chen ZHOU
A1 - Wen-yuan WANG
A1 - Ke-xin CHEN
A1 - Ze-jian CHEN
A1 - Jongwon JUNG
A1 - Shuai ZHANG
A1 - Yun-min CHEN
A1 - Bate BATE
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 9
SP - 704
EP - 720
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200047


Abstract: 
The role of wettability, often characterized by contact angle (θ), in two-phase immiscible phases displacement is not well understood. In this study, the color gradient lattice Boltzmann method (LBM), capable of maintaining the prescribed θ (from 0° to 180° at intervals of 10°) throughout the numerical simulations, was used to investigate the displacement patterns and displacement efficiency in a 2D porous medium. The capillary numbers (Ca) used were 0.01, 1, and 100, and the viscosity ratios (M) used were 0.1, 1, and 10. At M=10, the saturation (S) had a bilinear relationship with θ, while for M=0.1 and 1, the S-‍θ relationships were complicated by Ca. A saturation contour in the M-Ca-θ space was proposed to demonstrate the movement of a traditional 2D M-‍‍Ca phase diagram with θ increments. The value of S continued to increase after the breakthrough, and the final saturation (0.997) for the hydrophilic condition (θ=10°) was higher than that (0.673) for the hydrophobic condition (θ=170°).

基于格子波尔兹曼方法研究润湿性对非混相驱替的影响

作者:周宸1,王文远1,陈可心1,陈泽健2,Jongwon JUNG3,张帅1,陈云敏1,巴特1
机构:1浙江大学,建筑工程学院,岩土工程研究所,中国杭州,310058;2香港理工大学,土木与环境工程系,中国香港,九龙红磡;3忠北国立大学,土木工程学院,韩国忠北清州市,28644
目的:研究润湿性对于多孔介质驱替的影响,以提高驱替效率。
创新点:1.同时考虑了润湿性、毛细管数和粘滞比三者对驱替的影响并建立了三维相图;2.采用可以准确模拟接触角的边界条件算法,且模拟范围包含所有润湿性条件。
方法:采用格子波尔兹曼方法(LBM)对不同毛细管数-粘滞比组合下的19组接触角进行模拟,建立其与驱替形态和效率的影响。
结论:1.存在最优接触角使得击穿时的驱替效率最高;2.三维驱替相图包含了传统相图,反映了润湿性会使二维相图的驱替区域整体偏移。

关键词:润湿性;多孔介质;格子波尔兹曼方法(LBM);多相流

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]ArmstrongRT, SunCH, MostaghimiP, et al., 2021. Multiscale characterization of wettability in porous media. Transport in Porous Media, 140(1):215-240.

[2]BadalassiVE, CenicerosHD, BanerjeeS, 2003. Computation of multiphase systems with phase field models. Journal of Computational Physics, 190(2):371-397.

[3]BakhshianS, RabbaniHS, HosseiniSA, et al., 2020. New insights into complex interactions between heterogeneity and wettability influencing two‍‐phase flow in porous media. Geophysical Research Letters, 47(14):e2020GL088187.

[4]BakhshianS, RabbaniHS, ShokriN, 2021. Physics-driven investigation of wettability effects on two-phase flow in natural porous media: recent advances, new insights, and future perspectives. Transport in Porous Media, 140(1):85-106.

[5]ChenSY, DoolenGD, 1998. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30(1):329-364.

[6]CieplakM, RobbinsMO, 1990. Influence of contact angle on quasistatic fluid invasion of porous media. Physical Review B, 41(16):11508-11521.

[7]FanM, McClureJE, ArmstrongRT, et al., 2020. Influence of clay wettability alteration on relative permeability. Geophysical Research Letters, 47(18):e2020GL088545.

[8]GolmohammadiS, DingY, KuechlerM, et al., 2021. Impact of wettability and gravity on fluid displacement and trapping in representative 2D micromodels of porous media (2D sand analogs). Water Resources Research, 57(10):e2021WR029908.

[9]GovindarajanD, DeshpandeAP, RaghunathanR, 2018. Enhanced mobility of non aqueous phase liquid (NAPL) during drying of wet sand. Journal of Contaminant Hydrology, 209:1-13.

[10]GrunauD, ChenSY, EggertK, 1993. A lattice Boltzmann model for multiphase fluid flows. Physics of Fluids A: Fluid Dynamics, 5(10):2557-2562.

[11]GunstensenAK, RothmanDH, ZaleskiS, et al., 1991. Lattice Boltzmann model of immiscible fluids. Physical Review A, 43(8):4320-4327.

[12]HaugenÅ, FernøMA, BullØ, et al., 2010. Wettability impacts on oil displacement in large fractured carbonate blocks. Energy & Fuels, 24(5):3020-3027.

[13]HirtCW, NicholsBD, 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1):201-225.

[14]HosseiniSA, AlfiM, NicotJP, et al., 2018. Analysis of CO2 storage mechanisms at a CO2-EOR site, Cranfield, Mississippi. Greenhouse Gases: Science and Technology, 8(3):469-482.

[15]HuangHB, HuangJJ, LuXY, 2014. Study of immiscible displacements in porous media using a color-gradient-based multiphase lattice Boltzmann method. Computers & Fluids, 93:164-172.

[16]JiangF, LiuHH, ChenX, et al., 2022. A coupled LBM-DEM method for simulating the multiphase fluid-solid interaction problem. Journal of Computational Physics, 454:110963.

[17]JunkM, YangZX, 2008. Outflow boundary conditions for the lattice Boltzmann method. Progress in Computational Fluid Dynamics, an International Journal, 8(1-4):38-48.

[18]KangQJ, ZhangDX, ChenSY, 2004. Immiscible displacement in a channel: simulations of fingering in two dimensions. Advances in Water Resources, 27(1):13-22.

[19]KarabakalU, BagciS, 2004. Determination of wettability and its effect on waterflood performance in limestone medium. Energy & Fuels, 18(2):438-449.

[20]Karimi-FardM, GongB, DurlofskyLJ, 2006. Generation of coarse-scale continuum flow models from detailed fracture characterizations. Water Resources Research, 42(10):W10423.

[21]LallemandP, LuoLS, 2000. Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical Review E, 61(6):‍6546-6562.

[22]LanT, HuR, YangZB, et al., 2020. Transitions of fluid invasion patterns in porous media. Geophysical Research Letters, 47(20):e2020GL089682.

[23]Latva-KokkoM, RothmanDH, 2005. Static contact angle in lattice Boltzmann models of immiscible fluids. Physical Review E, 72(4):046701.

[24]LeclaireS, AbahriK, BelarbiR, et al., 2016a. Modeling of static contact angles with curved boundaries using a multiphase lattice Boltzmann method with variable density and viscosity ratios. International Journal for Numerical Methods in Fluids, 82(8):451-470.

[25]LeclaireS, PellerinN, ReggioM, et al., 2016b. A multiphase lattice Boltzmann method for simulating immiscible liquid-liquid interface dynamics. Applied Mathematical Modelling, 40(13-14):6376-6394.

[26]LeclaireS, ParmigianiA, MalaspinasO, et al., 2017. Generali

[27]zed three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media. Physical Review E, 95(3-1):033306.

[28]LenormandR, TouboulE, ZarconeC, 1988. Numerical models and experiments on immiscible displacements in porous media. Journal of Fluid Mechanics, 189:165-187.

[29]LevacheB, BartoloD, 2014. Revisiting the Saffman-Taylor experiment: imbibition patterns and liquid-entrainment transitions. Physical Review Letters, 113(4):044501.

[30]LiS, LiuHH, ZhangJG, et al., 2021. Modeling of three-phase displacement in three-dimensional irregular geometries using a lattice Boltzmann method. Physics of Fluids, 33(12):122108.

[31]LouQ, GuoZL, ShiBC, 2013. Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation. Physical Review E, 87(6):063301.

[32]Mirzaei-PaiamanA, Faramarzi-PalangarM, DjezzarS, et al., 2022. A new approach to measure wettability by relative permeability measurements. Journal of Petroleum Science and Engineering, 208:109191.

[33]MoraP, MorraG, YuenDA, et al., 2021a. Optimal wetting angles in lattice Boltzmann simulations of viscous fingering. Transport in Porous Media, 136(3):831-842.

[34]MoraP, MorraG, YuenDA, et al., 2021b. Influence of wetting on viscous fingering via 2D lattice Boltzmann simulations. Transport in Porous Media, 138(3):511-538.

[35]MuggeridgeA, CockinA, WebbK, et al., 2014. Recovery rates, enhanced oil recovery and technological limits. Philosophical Transactions of the Royal Society A. Mathematical, Physical and Engineering Sciences, 372(2006):20120320.

[36]PruessK, 2008. Leakage of CO2 from geologic storage: role of secondary accumulation at shallow depth. International Journal of Greenhouse Gas Control, 2(1):37-46.

[37]SethianJA, SmerekaP, 2003. Level set methods for fluid interfaces. Annual Review of Fluid Mechanics, 35(1):‍341-372.

[38]ShakeelM, SamanovaA, PourafsharyP, et al., 2021. Experimental analysis of oil displacement by hybrid engineered water/chemical EOR approach in carbonates. Journal of Petroleum Science and Engineering, 207:109297.

[39]SinghK, MenkeH, AndrewM, et al., 2017. Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media. Scientific Reports, 7(1):5192.

[40]SorbinoG, NicoteraMV, 2013. Unsaturated soil mechanics in rainfall-induced flow landslides. Engineering Geology, 165:105-132.

[41]SukopMC, OrD, 2004. Lattice Boltzmann method for mode

[42]ling liquid-vapor interface configurations in porous media. Water Resources Research, 40(1):W01509.

[43]TabelingP, ZocchiG, LibchaberA, 1987. An experimental study of the Saffman-Taylor instability. Journal of Fluid Mechanics, 177:67-82.

[44]TrojerM, SzulczewskiML, JuanesR, 2015. Stabilizing fluid-fluid displacements in porous media through wettability alteration. Physical Review Applied, 3(5):054008.

[45]XuH, LuanHB, HeYL, et al., 2012. A lifting relation from macroscopic variables to mesoscopic variables in lattice Boltzmann method: derivation, numerical assessments and coupling computations validation. Computers & Fluids, 54:92-104.

[46]XuZY, LiuHH, ValocchiAJ, 2017. Lattice Boltzmann simulation of immiscible two-phase flow with capillary valve effect in porous media. Water Resources Research, 53(5):3770-3790.

[47]ZhangQ, YanX, LiZH, 2022. A mathematical framework for multiphase poromechanics in multiple porosity media. Computers and Geotechnics, 146:104728.

[48]ZhaoBZ, MacminnCW, JuanesR, 2016. Wettability control on multiphase flow in patterned microfluidics. Proceedings of the National Academy of Sciences of the United States of America, 113(37):10251-10256.

[49]ZhaoBZ, MacminnCW, PrimkulovBK, et al., 2019. Comprehensive comparison of pore-scale models for multiphase flow in porous media. Proceedings of the National Academy of Sciences of the United States of America, 116(28):13799-13806.

[50]ZouQS, HeXY, 1997. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids, 9(6):1591-1598.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE