Full Text:   <56>

Summary:  <18>

Suppl. Mater.: 

CLC number: 

On-line Access: 2022-10-20

Received: 2022-06-26

Revision Accepted: 2022-08-11

Crosschecked: 2022-10-21

Cited: 0

Clicked: 156

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhiguo HE

https://orcid.org/0000-0002-0612-9062

Pengcheng JIAO

https://orcid.org/0000-0002-9577-3828

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2022 Vol.23 No.10 P.820-831

http://doi.org/10.1631/jzus.A2200331


Hydrodynamics of high-speed robots driven by the combustion-enabled transient driving method


Author(s):  Yang YANG, Yingzhong LOU, Guanzheng LIN, Zhiguo HE, Pengcheng JIAO

Affiliation(s):  Hainan Institute, Zhejiang University, Sanya 572000, China; more

Corresponding email(s):   hezhiguo@zju.edu.cn, pjiao@zju.edu.cn

Key Words:  Underwater vehicle, Computational fluid dynamics (CFD), Robotics, Transient driving method (TDM), Combustion actuation, Hydrodynamics


Yang YANG, Yingzhong LOU, Guanzheng LIN, Zhiguo HE, Pengcheng JIAO. Hydrodynamics of high-speed robots driven by the combustion-enabled transient driving method[J]. Journal of Zhejiang University Science A, 2022, 23(10): 820-831.

@article{title="Hydrodynamics of high-speed robots driven by the combustion-enabled transient driving method",
author="Yang YANG, Yingzhong LOU, Guanzheng LIN, Zhiguo HE, Pengcheng JIAO",
journal="Journal of Zhejiang University Science A",
volume="23",
number="10",
pages="820-831",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200331"
}

%0 Journal Article
%T Hydrodynamics of high-speed robots driven by the combustion-enabled transient driving method
%A Yang YANG
%A Yingzhong LOU
%A Guanzheng LIN
%A Zhiguo HE
%A Pengcheng JIAO
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 10
%P 820-831
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200331

TY - JOUR
T1 - Hydrodynamics of high-speed robots driven by the combustion-enabled transient driving method
A1 - Yang YANG
A1 - Yingzhong LOU
A1 - Guanzheng LIN
A1 - Zhiguo HE
A1 - Pengcheng JIAO
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 10
SP - 820
EP - 831
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200331


Abstract: 
underwater vehicles play important roles in underwater observation, ocean resource exploration, and sample collection. Soft robots are a unique type of underwater vehicles due to their good environmental adaptability and motion flexibility, although they are weak in terms of actuation and response ability. The transient driving method (TDM) was developed to resolve these shortcomings. However, the interaction between the robots’ swift motions and flow fields has not yet been fully studied. In this study, a computational fluid dynamic model is developed to simulate the fluid fields disturbed by transient high-speed motions generated by the robots. Focusing on the dependence of robot dynamics on thrust force and eccentricity, typical structures of both flow and turbulence fields around the robots are obtained to quantitatively analyze robot kinematic performance, velocity distribution, vortex systems, surface pressure, and turbulence. The results demonstrate the high-speed regions at the robots’ heads and tails and the vortex systems due to sudden expansion, indicating a negative relationship between the maximum fluid velocity and eccentricity. The reported results provide useful information for studying the environmental interaction abilities of robots during operating acceleration and steering tasks.

基于化学放能反应的瞬变速水下高速机器人水动力特性研究

作者:杨旸2,5,楼映中2,3,林官正2,贺治国1,2,4,焦鹏程1,2,4
机构:1浙江大学,海南研究院,中国三亚,572000;2浙江大学,港口海岸与近海工程研究所,中国舟山,316021;3华盛顿大学,土木工程学院,美国西雅图,WA 98195;4浙江大学,海洋感知技术与装备教育部工程研究中心,中国舟山,316021;5香港中文大学,电子工程系,中国香港,99907
目的:水下航行器在水下观测、海洋资源勘探和样本采集中发挥着重要作用。软机器人是一种独特的水下机器人,具有良好的环境适应性和运动灵活性,但它们的驱动和响应能力较弱。同时,机器人的快速运动与流场之间的相互作用尚未得到充分研究。为解决这些问题,本文旨在开发一种计算流体动力学模型,以模拟由机器人产生的瞬态高速运动所干扰的流场。
创新点:1.通过流固耦合与动网格技术开发了瞬变速机器人水下运动的数模模型。2.基于偏心率和化学放能反应驱动过程,建立二者与机器人水下运动表现、压力场、速度场和湍流结构的关系。
方法:1.关注机器人动力学对推力和偏心率的依赖性,并开发基于流固耦合方法与动网格技术的计算流体力学模型。2.获得机器人周围湍流场的典型结构,并定量分析速度分布、涡流结构、压力和湍流特性。
结论:1.机器人头部和尾部都会因突然加速而出现高流速区域,且在推力较高的一侧拐角处出现湍涡;机器人尾部产生的高k(湍流动能)区域随运动向内发展。2.本研究揭示了最大流速与偏心率之间的关系。3.机器人表面上的最大压力与推力呈正相关,与偏心率呈负相关;偏心率使机器人旋转,会增强流场的扰动,也会使头部区域的kε(湍流耗散率)降低。

关键词:水下航行器;计算流体力学(CFD);机器人学;瞬变速驱动方法(TDM);燃烧驱动;流体动力学

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BaiXJ, ShangJZ, LuoZR, et al., 2022. Development of amphibious biomimetic robots. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(3):‍157-187.

[2]BartlettNW, TolleyMT, OverveldeJTB, et al., 2015. A 3D-printed, functionally graded soft robot powered by combustion. Science, 349(6244):161-165.

[3]CalistiM, PicardiG, LaschiC, 2017. Fundamentals of soft robot locomotion. Journal of the Royal Society Interface, 14(130):20170101.

[4]ChenH, ZhuCA, YinXZ, et al., 2007. Hydrodynamic analysis and simulation of a swimming bionic robot tuna. Journal of Hydrodynamics, 19(4):412-420.

[5]ChuWS, LeeKT, SongSH, et al., 2012. Review of biomimetic underwater robots using smart actuators. International Journal of Precision Engineering and Manufacturing, 13(7):‍1281-1292.

[6]GrissomMD, ChitrakaranV, DiennoD, et al, 2006. Design and experimental testing of the OctArm soft robot manipulator. Proceedings of SPIE 6230, Unmanned Systems Technology VIII, p.62301F.

[7]HamedAM, VegaJ, LiuB, et al., 2017. Flow around a semicircular cylinder with passive flow control mechanisms. Experiments in Fluids, 58(3):22.

[8]HeZG, YangY, JiaoPC, et al., 2022. Copebot: underwater soft robot with copepod-like locomotion. Soft Robotics, 0158:1-13.

[9]HuWQ, LumGZ, MastrangeliM, et al., 2018, Small-scale soft-bodied robot with multimodal locomotion. Nature, 554(7690):81-85.

[10]KeithlyD, WhiteheadJ, VoineaA, et al., 2018. A cephalopod-inspired combustion powered hydro-jet engine using soft actuators. Extreme Mechanics Letters, 20:1-8.

[11]LaunderBE, SpaldingDB, 1974. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2):269-289.

[12]LeeC, KimM, KimYJ, et al., 2017. Soft robot review. International Journal of Control, Automation and Systems, 15(1):3-15.

[13]LiGR, ChenXP, ZhouFH, et al., 2021. Self-powered soft robot in the Mariana trench. Nature, 591(7848):66-71.

[14]LiH, GoG, KoSY, et al., 2016. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Materials and Structures, 25(2):027001.

[15]LiTF, LiGR, LiangYM, et al., 2016. Review of materials and structures in soft robotics. Chinese Journal of Theoretical and Applied Mechanics, 48(4):‍756-766 (in Chinese).

[16]LinGZ, YangY, HeZG, et al., 2022. Hydrodynamic optimization in high-acceleration underwater motions using added-mass coefficient. Ocean Engineering, 263:112274.

[17]LoepfeM, SchumacherCM, LustenbergerUB, et al., 2015. An untethered, jumping roly-poly soft robot driven by combustion. Soft Robotics, 2(1):33-41.

[18]LouYZ, HeZG, JiangHS, et al., 2019. Numerical simulation of two coalescing turbulent forced plumes in linearly stratified fluids. Physics of Fluids, 31:037111.

[19]MajidiC, ShepherdRF, KramerRK, et al., 2013. Influence of surface traction on soft robot undulation. The International Journal of Robotics Research, 32(13):1577-1584.

[20]NajemJ, SarlesSA, AkleB, et al., 2012. Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators. Smart Materials and Structures, 21(9):094026.

[21]RendaF, Giorgio-SerchiF, BoyerF, et al., 2015. Locomotion and elastodynamics model of an underwater shell-like soft robot. Proceedings of the IEEE International Conference on Robotics and Automation, p.1158-1165.

[22]RusD, TolleyMT, 2015. Design, fabrication and control of soft robots. Nature, 521(7553):467-475.

[23]ShepherdRF, StokesAA, FreakeJ, et al., 2013. Using explosions to power a soft robot. Angewandte Chemie International Edition, 52(10):2892-2896.

[24]SoomroAM, MemonFH, LeeJW, et al., 2021. Fully 3D printed multi-material soft bio-inspired frog for underwater synchronous swimming. International Journal of Mechanical Sciences, 210:106725.

[25]SuzumoriK, EndoS, KandaT, et al., 2017. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. Proceedings of IEEE International Conference on Robotics and Automation, p.4975-4980.

[26]TrivediD, RahnCD, KierWM, 2008. Soft robotics: biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics, 5(3):99-117.

[27]UmedachiT, VikasV, TrimmerBA, 2013. Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, p.4590-4595.

[28]VillanuevaA, SmithC, PriyaS, 2011. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspiration & Biomimetics, 6(3):036004.

[29]WangG, SongYJ, TangWS, et al., 2019. A numerical simulation analysis on bionic robot fish based on computational fluid dynamics (CFD) method. Journal of Nanoelectronics and Optoelectronics, 14(3):400-407.

[30]WangHP, YangY, LinGZ, et al., 2021. Untethered, high-speed soft jumpers enabled by combustion for motions through multiphase environments. Smart Materials and Structures, 30(1):015035.

[31]WigunaT, HeoS, ParkHC, et al., 2006. Mechanical design of biomimetic fish robot using LIPCA as artificial muscle. Key Engineering Materials, 326-328:1443-1446.

[32]YagmurS, DoganS, AksoyMH, et al., 2020. Turbulence modeling approaches on unsteady flow structures around a semi-circular cylinder. Ocean Engineering, 200:107051.

[33]YangY, HouBZ, ChenJY, et al., 2020. High-speed soft actuators based on combustion-enabled transient driving method (TDM). Extreme Mechanics Letters, 37:100731.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE