Full Text:   <686>

Summary:  <243>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-01-11

Received: 2022-04-25

Revision Accepted: 2022-08-29

Crosschecked: 2023-01-13

Cited: 0

Clicked: 796

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yao Yang

https://orcid.org/0000-0003-3611-2859

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2022 Vol.23 No.12 P.974-987

http://doi.org/10.1631/jzus.A2200233


Hole-growth phenomenon during pyrolysis of a cation-exchange resin particle


Author(s):  Zheng-liang HUANG, Yun-bo YU, Qi SONG, Yao YANG, Jing-yuan SUN, Jing-dai WANG, Yong-rong YANG

Affiliation(s):  Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   yao_yang@zju.edu.cn

Key Words:  Non-catalytic gas-solid reaction, Cation-exchange resin, Pyrolysis, Central-hole expansion, Temperature difference, Transformation


Zheng-liang HUANG, Yun-bo YU, Qi SONG, Yao YANG, Jing-yuan SUN, Jing-dai WANG, Yong-rong YANG. Hole-growth phenomenon during pyrolysis of a cation-exchange resin particle[J]. Journal of Zhejiang University Science A, 2022, 23(12): 974-987.

@article{title="Hole-growth phenomenon during pyrolysis of a cation-exchange resin particle",
author="Zheng-liang HUANG, Yun-bo YU, Qi SONG, Yao YANG, Jing-yuan SUN, Jing-dai WANG, Yong-rong YANG",
journal="Journal of Zhejiang University Science A",
volume="23",
number="12",
pages="974-987",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200233"
}

%0 Journal Article
%T Hole-growth phenomenon during pyrolysis of a cation-exchange resin particle
%A Zheng-liang HUANG
%A Yun-bo YU
%A Qi SONG
%A Yao YANG
%A Jing-yuan SUN
%A Jing-dai WANG
%A Yong-rong YANG
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 12
%P 974-987
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200233

TY - JOUR
T1 - Hole-growth phenomenon during pyrolysis of a cation-exchange resin particle
A1 - Zheng-liang HUANG
A1 - Yun-bo YU
A1 - Qi SONG
A1 - Yao YANG
A1 - Jing-yuan SUN
A1 - Jing-dai WANG
A1 - Yong-rong YANG
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 12
SP - 974
EP - 987
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200233


Abstract: 
A novel central hole-expansion phenomenon is identified, in which the cation-exchange resin is pyrolyzed in a mixed atmosphere of nitrogen and oxygen at 400‍–‍500°C. In this reaction, the reaction path is predictable and always starts from the center of the resin particle to form a central hole, then continues and expands around the hole, finally forming a uniformly distributed hole group; the particle surface remains intact. Analysis shows that this formation mode is due to the different reaction paths of sulfonic groups between the surface and interior of the particle, caused by the temperature difference. On the surface, transformation reactions happen at high temperatures (410‍–‍500°C) to form stable organic sulfur structures, while decomposition occurs inside the particle at a relatively low temperature (<410 °C) and promotes complete pyrolysis of the copolymer matrix to form holes.

阳离子交换树脂颗粒热解过程中的孔增长现象

作者:黄正梁1,余云波1,宋琦1,杨遥1,孙靖元1,王靖岱2,阳永荣2
机构:1浙江大学,化学与生物工程学院,浙江省先进化学工程制造技术重点实验室,中国杭州,310027;2浙江大学,化学与生物工程学院,化学工程国家重点实验室,中国杭州,310027
目的:传统非催化气固反应模型无法用于解释离子交换树脂的热解过程。本文旨在探讨不同条件下管式炉反应器中阳离子交换树脂的热解模式,并研究反应气氛、反应温度和树脂结构对新型热解模式的影响规律。希望提出的中心孔扩展模式为非催化气固反应模型的验证和开发提供指导。
创新点:1.确定一种新的非催化气固反应,且该反应遵循中心孔膨胀模式;2.厘清中心空穴扩展模式的形成机理。
方法:1.通过实验分析及相关表征测试,研究反应气氛、反应温度和树脂结构对新型热解模式的影响规律;2.通过数值模拟和动力学角度(Flynn-Ozawa方法),分析磺酸基团的分解和转化动力学,厘清中心空穴扩展模式的形成机理;3.通过仿真模拟(COMSOL Multiphysics),初步模拟树脂颗粒在初始反应阶段的温度变化,为阳离子交换树脂热解新模式提供间接验证。
结论:1.确定了一种新的非催化气固反应,且该反应遵循中心孔膨胀模式;2.厘清了中心空穴扩展模式的形成机理,发现其主要与磺酸基团的反应路径有关;3.中心孔扩展模式因其规律的反应过程和可预测的反应位点,可为非催化气固反应模型的验证和开发提供指导。

关键词:非催化气固反应;阳离子交换树脂;热解;中心扩孔;温差;转化

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AmutioM, LopezG, AguadoR, et al., 2012. Kinetic study of lignocellulosic biomass oxidative pyrolysis. Fuel, 95:‍305-311.

[2]AsfawHD, YounesiR, ValvoM, et al., 2016. Boosting the thermal stability of emulsion-templated polymers via sulfonation: an efficient synthetic route to hierarchically porous carbon foams. ChemistrySelect, 1(4):784-792.

[3]BachQV, TrinhTN, TranKQ, et al., 2017. Pyrolysis characteristics and kinetics of biomass torrefied in various atmospheres. Energy Conversion and Management, 141:72-78.

[4]BavaYB, GeronésM, GiovanettiLJ, et al., 2019. Speciation of sulphur in asphaltenes and resins from Argentinian petroleum by using XANES spectroscopy. Fuel, 256:115952.

[5]ChenT, KuX, LinJZ, et al., 2018. New pyrolysis model for biomass particles in a thermally thick regime. Energy & Fuels, 32(9):9399-9414.

[6]ChenYJ, JingL, LiXL, et al., 2006. Suppressed anion chromatography using mixed zwitter-ionic and carbonate eluents. Journal of Chromatography A, 1118(1):3-11.

[7]ChunUK, ChoiK, YangKH, et al., 1998. Waste minimization pretreatment via pyrolysis and oxidative pyroylsis of organic ion exchange resin. Waste Management, 18(3):‍183-196.

[8]GómezMA, PorteiroJ, PatiñoD, et al., 2015. Fast-solving thermally thick model of biomass particles embedded in a CFD code for the simulation of fixed-bed burners. Energy Conversion and Management, 105:30-44.

[9]HommaS, OgataS, KogaJ, et al., 2005. Gas‍–‍solid reaction model for a shrinking spherical particle with unreacted shrinking core. Chemical Engineering Science, 60(18):4971-4980.

[10]HouJL, MaY, LiSY, et al., 2018. Transformation of sulfur and nitrogen during Shenmu coal pyrolysis. Fuel, 231:134-144.

[11]HuHY, FangY, LiuH, et al., 2014. The fate of sulfur during rapid pyrolysis of scrap tires. Chemosphere, 97:‍102-107.

[12]JuangRS, LeeTS, 2002. Oxidative pyrolysis of organic ion exchange resins in the presence of metal oxide catalysts. Journal of Hazardous Materials, 92(3):301-314.

[13]MatsudaM, FunabashiK, YusaH, et al., 1987. Influence of functional sulfonic acid group on pyrolysis characteristics for cation exchange resin. Journal of Nuclear Science and Technology, 24(2):124-128.

[14]OluotiKO, RichardsT, DoddapaneniTRK, et al., 2014. Evaluation of the pyrolysis and gasification kinetics of tropical wood biomass. BioResources, 9(2):2179-2190.

[15]PetersenEE, 1957. Reaction of porous solids. AIChE Journal, 3(4):443-448.

[16]RamachandranPA, DoraiswamyLK, 1982. Modeling of noncatalytic gas-solid reactions. AIChE Journal, 28(6):‍881-900.

[17]RenQQ, ZhaoCS, 2012. NOx and N2O precursors from biomass pyrolysis: nitrogen transformation from amino acid. Environmental Science & Technology, 46(7):‍4236-4240.

[18]SadhukhanAK, GuptaP, SahaRK, 2009. Modelling of pyrolysis of large wood particles. Bioresource Technology, 100(12):3134-3139.

[19]SadhukhanAK, GuptaP, SahaRK, 2010. Modelling of combustion characteristics of high ash coal char particles at high pressure: shrinking reactive core model. Fuel, 89(1):162-169.

[20]SafariV, ArzpeymaG, RashchiF, et al., 2009. A shrinking particle—shrinking core model for leaching of a zinc ore containing silica. International Journal of Mineral Processing, 93(1):79-83.

[21]ShenDK, GuS, JinBS, et al., 2011. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Bioresource Technology, 102(2):2047-2052.

[22]SingarePU, LokhandeRS, MadyalRS, 2010. Thermal degradation studies of polystyrene sulfonic and polyacrylic carboxylic cationites. Russian Journal of General Chemistry, 80(3):527-532.

[23]SzekelyJ, PropsterM, 1975. A structural model for gas solid reactions with a moving boundary-VI: the effect of grain size distribution on the conversion of porous solids. Chemical Engineering Science, 30(9):1049-1055.

[24]TrubetskayaA, LeahyJJ, YazhenskikhE, et al., 2019. Characterization of woodstove briquettes from torrefied biomass and coal. Energy, 171:853-865.

[25]UhdeG, HoffmannU, 1997. Noncatalytic gas-solid reactions: modelling of simultaneous reaction and formation of surface with a nonisothermal crackling core model. Chemical Engineering Science, 52(6):1045-1054.

[26]VyazovkinS, BurnhamAK, CriadoJM, et al., 2011. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520(1-2):1-19.

[27]WenCY, 1968. Noncatalytic heterogeneous solid-fluid reaction models. Industrial & Engineering Chemistry, 60(9):34-54.

[28]YagiS, KuniiD, 1955. Studies on fluidized-solids reactors for particles with decreasing diameters. Chemical Engineering, 19(10):500-506 (in Janpanese).

[29]YangHC, LeeMW, HwangHS, et al., 2014. Study on thermal decomposition and oxidation kinetics of cation exchange resins using non-isothermal TG analysis. Journal of Thermal Analysis and Calorimetry, 118(2):‍1073-1083.

[30]YangHC, LeeSY, ChoiYC, et al., 2017. Thermokinetic analysis of spent ion-exchange resins for the optimization of carbonization reactor condition. Journal of Thermal Analysis and Calorimetry, 127(1):587-595.

[31]YaoX, YuQB, HanZR, et al., 2018. Kinetic and experimental characterizations of biomass pyrolysis in granulated blast furnace slag. International Journal of Hydrogen Energy, 43(19):9246-9253.

[32]YoshiokaT, MotokiT, OkuwakiA, 2001. Kinetics of hydrolysis of poly (ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model. Industrial & Engineering Chemistry Research, 40(1):75-79.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE