Full Text:   <152>

CLC number: 

On-line Access: 2023-07-03

Received: 2023-02-14

Revision Accepted: 2023-06-26

Crosschecked: 0000-00-00

Cited: 0

Clicked: 255

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 1998 Vol.-1 No.-1 P.

http://doi.org/10.1631/jzus.A2300085


A method for support stiffness failure identification in a steel spring floating slab track of urban railway: a case study in China


Author(s):  Junyuan ZHENG, Caiyou ZHAO, Duojia SHI, Ping WANG, Jian WANG, Bolong JIANG, Xi SHENG

Affiliation(s):  Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; more

Corresponding email(s):   zcy848278@163.com

Key Words:  Floating slab track, Support stiffness, Detailed analytical model, Failure identification, Monitoring system


Junyuan ZHENG, Caiyou ZHAO, Duojia SHI, Ping WANG, Jian WANG, Bolong JIANG, Xi SHENG. A method for support stiffness failure identification in a steel spring floating slab track of urban railway: a case study in China[J]. Journal of Zhejiang University Science A, 1998, -1(-1): .

@article{title="A method for support stiffness failure identification in a steel spring floating slab track of urban railway: a case study in China",
author="Junyuan ZHENG, Caiyou ZHAO, Duojia SHI, Ping WANG, Jian WANG, Bolong JIANG, Xi SHENG",
journal="Journal of Zhejiang University Science A",
volume="-1",
number="-1",
pages="",
year="1998",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300085"
}

%0 Journal Article
%T A method for support stiffness failure identification in a steel spring floating slab track of urban railway: a case study in China
%A Junyuan ZHENG
%A Caiyou ZHAO
%A Duojia SHI
%A Ping WANG
%A Jian WANG
%A Bolong JIANG
%A Xi SHENG
%J Journal of Zhejiang University SCIENCE A
%V -1
%N -1
%P
%@ 1673-565X
%D 1998
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300085

TY - JOUR
T1 - A method for support stiffness failure identification in a steel spring floating slab track of urban railway: a case study in China
A1 - Junyuan ZHENG
A1 - Caiyou ZHAO
A1 - Duojia SHI
A1 - Ping WANG
A1 - Jian WANG
A1 - Bolong JIANG
A1 - Xi SHENG
J0 - Journal of Zhejiang University Science A
VL - -1
IS - -1
SP -
EP -
%@ 1673-565X
Y1 - 1998
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300085


Abstract: 
The extensive use of steel spring floating slab tracks has effectively addressed the challenge of alleviating the environmental vibrations induced by urban rail transit systems. However, under the combined action of train dynamic loads and complex environmental factors, problems, such as the fracture of steel spring vibration isolators and suspension vibrations induced by the uneven settlement of the base, often occur. The failure of isolator support stiffness is often hidden in its early stages and is challenging to identify by conventional detection methods. At the same time, it will aggravate the wheel-rail interaction, accelerate the deterioration of track structure, and can even affect the driving safety. This study first establishes a detailed coupled train–floating slab track–foundation analytical model. Then the influence of the vibration isolator support stiffness failure on the dynamic indices of the floating slab track system response is analyzed. A set of defect identification methods that can detect the number of failed steel springs, severity of damage and its location are proposed. Finally, an intelligent monitoring system for support stiffness of floating slab track is built by combining the density-based spatial clustering of applications with noise algorithm and statistical data analysis and is applied to a rail line in southern China. During a three-year monitoring campaign, a suspension failure and a fracture of a steel spring were each successfully detected and detailed failure information was obtained. Field investigation results were consistent with the damage identification results. After repair, the track structure dynamic response returned to the average pre-damage level and further deterioration had been arrested. The proposed damage identification methods and monitoring system provide an approach for intelligent identification of track structure support stiffness failures.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE