Full Text:   <818>

Summary:  <40>

CLC number: 

On-line Access: 2025-01-21

Received: 2023-02-27

Revision Accepted: 2023-10-09

Crosschecked: 2025-01-21

Cited: 0

Clicked: 1151

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.1 P.50-65

http://doi.org/10.1631/jzus.A2300102


Segmented predictor-corrector reentry guidance based on an analytical profile


Author(s):  Hui XU, Guangbin CAI, Chaoxu MU, Xin LI, Hao WEI

Affiliation(s):  Department of Missile Engineering, Rocket Force University of Engineering, Xi'an710025, China; more

Corresponding email(s):   cgb0712@163.com

Key Words:  Hypersonic glide vehicle (HGV), Segmented reentry guidance method, Analytical profile, Adaptive guidance cycle, Reentry trajectory


Hui XU, Guangbin CAI, Chaoxu MU, Xin LI, Hao WEI. Segmented predictor-corrector reentry guidance based on an analytical profile[J]. Journal of Zhejiang University Science A, 2025, 26(1): 50-65.

@article{title="Segmented predictor-corrector reentry guidance based on an analytical profile",
author="Hui XU, Guangbin CAI, Chaoxu MU, Xin LI, Hao WEI",
journal="Journal of Zhejiang University Science A",
volume="26",
number="1",
pages="50-65",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300102"
}

%0 Journal Article
%T Segmented predictor-corrector reentry guidance based on an analytical profile
%A Hui XU
%A Guangbin CAI
%A Chaoxu MU
%A Xin LI
%A Hao WEI
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 1
%P 50-65
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300102

TY - JOUR
T1 - Segmented predictor-corrector reentry guidance based on an analytical profile
A1 - Hui XU
A1 - Guangbin CAI
A1 - Chaoxu MU
A1 - Xin LI
A1 - Hao WEI
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 1
SP - 50
EP - 65
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300102


Abstract: 
A segmented predictor-corrector method is proposed for hypersonic glide vehicles to address the issue of the slow computational speed of obtaining guidance commands using the traditional predictor-corrector guidance method. Firstly, an altitude-energy profile is designed, and the bank angle is derived analytically as the initial iteration value for the predictor-corrector method. The predictor-corrector guidance method has been improved by deriving an analytical form for predicting the range-to-go error, which greatly accelerates the iterative speed. Then, a segmented guidance algorithm is proposed. The above analytically predictor-corrector guidance method is adopted when the energy exceeds an energy threshold. When the energy is less than the threshold, the equidistant test method is used to calculate the bank angle command, which ensures guidance accuracy as well as computational efficiency. Additionally, an adaptive guidance cycle strategy is applied to reduce the computational time of the reentry guidance trajectory. Finally, the accuracy and robustness of the proposed method are verified through a series of simulations and Monte-Carlo experiments. Compared with the traditional integral method, the proposed method requires 75% less computation time on average and achieves a lower landing error.

基于解析剖面的分段预测校正再入制导

作者:徐慧1,蔡光斌1,穆朝絮2,李欣1,魏昊1
机构:1火箭军工程大学,导弹工程学院,中国西安,710025;2天津大学,电气自动化与信息工程学院,中国天津,300072
目的:近年来,高超声速滑翔飞行器由于其全球快速到达能力和超强的机动性,在世界范围内引起了极大的关注。制导问题是高超声速滑翔飞行器应用于航空航天领域要解决的首要问题。本文主要针对再入制导问题中常用的预测校正制导方法进行改进:1.克服传统积分式预测校正计算耗时长的问题;2.改善解析式方法由于简化较多导致制导精度不理想的问题。
创新点:1.设计新的高度能量剖面进行倾侧角解析推导,为预测校正迭代环节提供良好初值。2.解析推导剩余航程,极大提高了计算效率,缩短预测校正环节计算时间。3.提出分段制导和自适应制导周期策略,进一步提升了制导精度和计算效率。4.充分的仿真实验验证了本文的方法能够快速、准确和鲁棒地获得制导指令,具有在线应用的潜力。
方法:1.建立高超声速滑翔飞行器再入运动模型,定义能量变量,对再入运动模型进行降阶。2.解析推导剩余航程与能量和倾侧角之间的解析关系式。3.选择能量阈值,分段求解倾侧角指令;在第一阶段,距离终点较远时,采用解析预测校正方法求解倾侧角;第二阶段,距离终点较近时,等距试测法进行倾侧角求解。4.提出自适应制导周期策略,灵活调整制导周期,提高制导精度。5.设置航向角偏差走廊,得到倾侧角指令符号,给出完整倾侧角指令。6.分别设置三类实验验证该方法的有效性、精确性和鲁棒性。
结论:1.本文提出的方法能够解析推导出倾侧角和计算剩余航程。2.所提方法能够有效提高再入制导指令计算效率,计算时间缩短两倍以上。3.实验结果表明,本文算法能够高效地得到精确的制导指令;蒙特卡洛实验验证了本文方法具有较好的鲁棒性。

关键词:高超声速滑翔飞行器;分段再入制导;解析剖面;自适应制导周期;再入轨迹

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AnK, GuoZY, HuangW, et al., 2022. Leap trajectory tracking control based on sliding mode theory for hypersonic gliding vehicle. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(3):188-207.

[2]ChenK, LiangWC, LiuMX, et al., 2020. Comparison of geomagnetic aided navigation algorithms for hypersonic vehicles. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(8):673-683.

[3]GaoY, CaiGB, YangXG, et al., 2019a. Improved tentacle-based guidance for reentry gliding hypersonic vehicle with no-fly zone constraint. IEEE Access, 7:119246-119258.

[4]GaoY, CaiGB, ZhangSX, et al., 2019b. Reentry maneuver guidance for hypersonic glide vehicles under multiple no-fly zones. Journal of Ordnance Equipment Engineering, 40(8):32-39(in Chinese).

[5]GaoY, CaiGB, XuH, et al., 2020. Reentry maneuver guidance of hypersonic glide vehicle under virtual multi-tentacle detection. Acta Aeronautica et Astronautica Sinica, 41(11):623703(in Chinese).

[6]JoshiA, SivanK, AmmaSS, 2007. Predictor-corrector reentry guidance algorithm with path constraints for atmospheric entry vehicles. Journal of Guidance, Control, and Dynamics, 30(5):1307-1318.

[7]LiMM, HuJ, 2018. An approach and landing guidance design for reusable launch vehicle based on adaptive predictor-corrector technique. Aerospace Science and Technology, 75:13-23.

[8]LiangZX, LiQD, RenZ, 2017. Virtual terminal-based adaptive predictor-corrector entry guidance. Journal of Aerospace Engineering, 30(4):04017013.

[9]LiangZX, ZhuSY, 2021. Constrained predictor-corrector guidance via bank saturation avoidance for low L/D entry vehicles. Aerospace Science and Technology, 109:106448.

[10]LuP, 2008. Predictor-corrector entry guidance for low-lifting vehicles. Journal of Guidance, Control, and Dynamics, 31(4):1067-1075.

[11]LuP, 2014. Entry guidance: a unified method. Journal of Guidance, Control, and Dynamics, 37(3):713-728.

[12]PanL, PengSC, XieY, et al., 2020. 3D guidance for hypersonic reentry gliders based on analytical prediction. Acta Astronautics, 167:42-51.

[13]PhillipsTH, 2003. A Common Aero Vehicle (CAV) Model, Description, and Employment Guide. Schafer Corporation for AFRL and AFSPC, Arlington, USA.

[14]RizviSTUI, HeLS, XuDJ, 2015. Optimal trajectory and heat load analysis of different shape lifting reentry vehicles for medium range application. Defence Technology, 11(4):350-361.

[15]ShenZL, LuP, 2003. Onboard generation of three-dimensional constrained entry trajectories. Journal of Guidance, Control, and Dynamics, 26(1):111-121.

[16]WangT, ZhangHB, TangGJ, 2017a. Predictor-corrector entry guidance with waypoint and no-fly zone constraints. Acta Astronautica, 138:10-18.

[17]WangT, ZhangHB, ZengL, et al., 2017b. A robust predictor-corrector entry guidance. Aerospace Science and Technology, 66:103-111.

[18]WangX, GuoJ, TangSJ, et al., 2019. Time-cooperative entry guidance based on analytical profile. Acta Aeronautica et Astronautica Sinica, 40(3):322565(in Chinese).

[19]XiaYQ, ShenGH, ZhouLY, et al., 2015. Mars entry guidance based on segmented guidance predictor-corrector algorithm. Control Engineering Practice, 45:79-85.

[20]XuH, CaiGB, ZhangSX, 2021. Modified aerodynamic coefficient fitting models of hypersonic gliding vehicle in reentry phase. Journal of Astronautics, 42(9):1139-1149(in Chinese).

[21]XuH, CaiGB, ZhangSX, et al., 2022. Hypersonic reentry trajectory optimization by using improved sparrow search algorithm and control parametrization method. Advances in Space Research, 69(6):2512-2524.

[22]XueJK, ShenB, 2020. A novel swarm intelligence optimization approach: sparrow search algorithm. Systems Science & Control Engineering, 8(1):22-34.

[23]XueSB, LuP, 2010. Constrained predictor-corrector entry guidance. Journal of Guidance, Control, and Dynamics, 33(4):1273-1281.

[24]YongEM, QianWQ, HeKF, 2014. An adaptive predictor-corrector reentry guidance based on self-definition way-points. Aerospace Science and Technology, 39:211-221.

[25]YuWB, ChenWC, JiangZG, et al., 2018. Analytical entry guidance for no-fly-zone avoidance. Aerospace Science and Technology, 72:426-442.

[26]ZengL, ZhangHB, ZhengW, 2018. A three-dimensional predictor-corrector entry guidance based on reduced-order motion equations. Aerospace Science and Technology, 73:223-231.

[27]ZengXF, WangJY, WangXH, 2013. Gliding guidance based on energy and analytical predictor-corrector. Systems Engineering and Electronics, 35(12):2582-2588(in Chinese).

[28]ZhangHX, GongZF, CaiGB, et al., 2019. Reentry tracking control of hypersonic vehicle with complicated constraints. Journal of Ordnance Equipment Engineering, 40(1):1-6(in Chinese).

[29]ZhangJL, LiuK, FanYZ, et al., 2021. A piecewise predictor-corrector re-entry guidance algorithm with no-fly zone avoidance. Journal of Astronautics, 42(1):122-131(in Chinese).

[30]ZhangXY, WangGH, SongZY, et al., 2015. Hypersonic sliding target tracking in near space. Defence Technology, 11(4):370-381.

[31]ZhouHY, WangXG, CuiNG, 2020. Glide guidance for reusable launch vehicles using analytical dynamics. Aerospace Science and Technology, 98:105678.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE