Full Text:   <584>

Summary:  <174>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2024-07-24

Cited: 0

Clicked: 1179

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ze-bing MAO

https://orcid.org/0000-0002-2944-7151

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2024 Vol.25 No.7 P.596-604

http://doi.org/10.1631/jzus.A2300479


Novel soft robotic finger model driven by electrohydrodynamic (EHD) pump


Author(s):  Xuehang BAI, Yanhong PENG, Dongze LI, Zhuochao LIU, Zebing MAO

Affiliation(s):  Department of Mechanical, Automotive and Materials Engineering, Faculty of Engineering, University of Windsor, Windsor N9B 3P4, Canada; more

Corresponding email(s):   mao.z.aa@yamaguchi-u.ac.jp

Key Words: 


Share this article to: More <<< Previous Article|

Xuehang BAI, Yanhong PENG, Dongze LI, Zhuochao LIU, Zebing MAO. Novel soft robotic finger model driven by electrohydrodynamic (EHD) pump[J]. Journal of Zhejiang University Science A, 2024, 25(7): 596-604.

@article{title="Novel soft robotic finger model driven by electrohydrodynamic (EHD) pump",
author="Xuehang BAI, Yanhong PENG, Dongze LI, Zhuochao LIU, Zebing MAO",
journal="Journal of Zhejiang University Science A",
volume="25",
number="7",
pages="596-604",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300479"
}

%0 Journal Article
%T Novel soft robotic finger model driven by electrohydrodynamic (EHD) pump
%A Xuehang BAI
%A Yanhong PENG
%A Dongze LI
%A Zhuochao LIU
%A Zebing MAO
%J Journal of Zhejiang University SCIENCE A
%V 25
%N 7
%P 596-604
%@ 1673-565X
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300479

TY - JOUR
T1 - Novel soft robotic finger model driven by electrohydrodynamic (EHD) pump
A1 - Xuehang BAI
A1 - Yanhong PENG
A1 - Dongze LI
A1 - Zhuochao LIU
A1 - Zebing MAO
J0 - Journal of Zhejiang University Science A
VL - 25
IS - 7
SP - 596
EP - 604
%@ 1673-565X
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300479


Abstract: 
This study investigates the performance of an EHD robotic finger joint through an experimental design. First, the robotic finger joint is successfully manufactured, then experiments of fulfilling the bending function are conducted on the structure. Meanwhile, the angle of bending and the voltage of electrification are recorded as raw data. Finally, the relationship between two variables is determined and analyzed.

电流体泵驱动的新型软机器人手指模型

作者:白雪航1,彭彦鸿2,李东泽3,刘卓超4,毛泽兵5
机构:1温莎大学,工程系,加拿大温莎,N9B 3P4;2名古屋大学,工程学院,日本名古屋,464-8601;3青岛大学,计算机科学与技术学院,中国青岛,266071;4北京科技大学设计研究院有限公司,中国北京,100083;5山口大学,工学部,日本山口,755-8611
目的:在机器人与人类交互领域,软机器人提供了增强的安全性和适应性。该领域的一个主要挑战是将软执行器与泵系统集成。本研究旨在通过电场感应的介电流体流动,使机器人手指结合嵌入纯软电流体动力学(EHD)泵的柔性橡胶板,从而引起机器人手指的受控弯曲运动;并推导全面的数学模型,以准确描述手指机器人的机械表现。
创新点:1.赋予EHD泵驱动机器手指更加便捷的结构,并进行测试;2.提出了一个全面的数学模型来弥合EHD泵系统和手指动力学之间的差距,使该模型能准确描述从EHD驱动机构到机器人机械动作的整个系统。
方法:1.介绍手指机器人的结构(图1);2.详细阐述加工过程;3.通过数学建模,提出一个全面的数学模型来弥合EHD泵系统和手指动力学之间的误差,以准确描述从EHD驱动机构到机器人机械动作的整个系统(图2);4.通过实验验证理论模型的有效性(图5)。
结论:1.本研究的模型将EHD泵的电气特性(电压输入)与机器人机构的几何约束(偏转角)联系起来,使该模型的有效性得到验证;2.机器手指关节在10 kV下实现的最大弯曲角度为37°,证明了所提出的设计和方法的有效性。

关键词:理论建模;机器人手指;EHD驱动

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]CacuccioloV, ShintakeJ, KuwajimaY, et al., 2019. Stretchable pumps for soft machines. Nature, 572(7770):516-519.

[2]ChenFY, RenZX, LauGK, 2022. Maximal strengths of dielectric elastomer fingers for a passive grip. Smart Materials and Structures, 31(4):045014.

[3]DarabiJ, RadaM, OhadiM, et al., 2002. Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump. Journal of Microelectromechanical Systems, 11(6):684-690.

[4]FunaboraY, 2018. Flexible fabric actuator realizing 3D movements like human body surface for wearable devices. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), p.6992-6997.

[5]JiaoZD, ZhangC, RuanJP, et al., 2021. Re-foldable origami-inspired bidirectional twisting of artificial muscles reproduces biological motion. Cell Reports Physical Science, 2(5):100407.

[6]KobayashiR, NabaeH, EndoG, et al., 2022. Soft tensegrity robot driven by thin artificial muscles for the exploration of unknown spatial configurations. IEEE Robotics and Automation Letters, 7(2):5349-5356.

[7]KoikeN, HayakawaT, 2021. Evaluation of the deformation shape of a balloon-type dielectric elastomer actuator prestretched with water pressure. ROBOMECH Journal, 8(1):2.

[8]KongDQ, HirataT, LiF, et al., 2024. A novel miniature swimmer propelled by 36° Y-cut lithium niobate acoustic propulsion system. Sensors and Actuators A: Physical, 365:114837.

[9]MaoZB, YoshidaK, KimJW, 2019a. Developing O/O (oil-in-oil) droplet generators on a chip by using ECF (electro-conjugate fluid) micropumps. Sensors and Actuators B: Chemical, 296:126669.

[10]MaoZB, YoshidaK, KimJW, 2019b. A droplet-generator-on-a-chip actuated by ECF (electro-conjugate fluid) micropumps. Microfluidics and Nanofluidics, 23(12):130.

[11]MaoZB, YoshidaK, KimJW, 2019c. Fast packaging by a partially-crosslinked SU-8 adhesive tape for microfluidic sensors and actuators. Sensors and Actuators A: Physical, 289:77-86.

[12]MaoZB, YoshidaK, KimJW, 2020a. Active sorting of droplets by using an ECF (electro-conjugate fluid) micropump. Sensors and Actuators A: Physical, 303:111702.

[13]MaoZB, NagaokaT, YokotaS, et al., 2020b. Soft fiber-reinforced bending finger with three chambers actuated by ECF (electro-conjugate fluid) pumps. Sensors and Actuators A: Physical, 310:112034.

[14]MaoZB, IizukaT, MaedaS, 2021. Bidirectional electrohydrodynamic pump with high symmetrical performance and its application to a tube actuator. Sensors and Actuators A: Physical, 332:113168.

[15]MaoZB, AsaiY, WiranataA, et al., 2022a. Eccentric actuator driven by stacked electrohydrodynamic pumps. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(4):329-334.

[16]MaoZB, AsaiY, YamanoiA, et al., 2022b. Fluidic rolling robot using voltage-driven oscillating liquid. Smart Materials and Structures, 31(10):105006.

[17]MaoZB, PengYH, HuCL, et al., 2023. Soft computing-based predictive modeling of flexible electrohydrodynamic pumps. Biomimetic Intelligence and Robotics, 3(3):100114.

[18]NagaokaT, MaoZB, TakemuraK, et al., 2019. ECF (electro-conjugate fluid) finger with bidirectional motion and its application to a flexible hand. Smart Materials and Structures, 28(2):025032.

[19]PengYH, YamaguchiH, FunaboraY, et al., 2022. Modeling fabric-type actuator using point clouds by deep learning. IEEE Access, 10:94363-94375.

[20]PengYH, SakaiY, NakagawaK, et al., 2023a. Funabot-suit: a bio-inspired and McKibben muscle-actuated suit for natural kinesthetic perception. Biomimetic Intelligence and Robotics, 3(4):100127.

[21]PengYH, LiDZ, YangXY, et al., 2023b. A review on electrohydrodynamic (EHD) pump. Micromachines, 14(2):321.

[22]PengYH, NabaeH, FunaboraY, et al., 2024. Peristaltic transporting device inspired by large intestine structure. Sensors and Actuators A: Physical, 365:114840.

[23]ShenYL, ChenMH, SkeltonRE, 2023. Markov data-based reference tracking control to tensegrity morphing airfoils. Engineering Structures, 291:116430.

[24]SmithM, CacuccioloV, SheaH, 2023. Fiber pumps for wearable fluidic systems. Science, 379(6639):1327-1332.

[25]TanMWM, BarkH, ThangavelG, et al., 2022. Photothermal modulated dielectric elastomer actuator for resilient soft robots. Nature Communications, 13(1):6769.

[26]TawkC, ZhouH, SariyildizE, et al., 2021. Design, modeling, and control of a 3D printed monolithic soft robotic finger with embedded pneumatic sensing chambers. IEEE/ASME Transactions on Mechatronics, 26(2):876-887.

[27]TimoshenkoS, Woinowsky-KriegerS, 1959. Theory of Plates and Shells. McGraw-Hill, New York, USA.

[28]ZhangC, ChenJX, LiJT, et al., 2023. Large language models for human-robot interaction: a review. Biomimetic Intelligence and Robotics, 3(4):100131.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE