Full Text:   <2888>

CLC number: Q81

On-line Access: 

Received: 2008-02-11

Revision Accepted: 2008-04-26

Crosschecked: 2008-10-30

Cited: 4

Clicked: 5692

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2008 Vol.9 No.12 P.931-937

http://doi.org/10.1631/jzus.B0820045


Influence of outliers on QTL mapping for complex traits


Author(s):  Yousaf HAYAT, Jian YANG, Hai-ming XU, Jun ZHU

Affiliation(s):  Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China; more

Corresponding email(s):   jzhu@zju.edu.cn

Key Words:  QTL mapping, Outliers and influential observations, Complex trait


Yousaf HAYAT, Jian YANG, Hai-ming XU, Jun ZHU. Influence of outliers on QTL mapping for complex traits[J]. Journal of Zhejiang University Science B, 2008, 9(12): 931-937.

@article{title="Influence of outliers on QTL mapping for complex traits",
author="Yousaf HAYAT, Jian YANG, Hai-ming XU, Jun ZHU",
journal="Journal of Zhejiang University Science B",
volume="9",
number="12",
pages="931-937",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0820045"
}

%0 Journal Article
%T Influence of outliers on QTL mapping for complex traits
%A Yousaf HAYAT
%A Jian YANG
%A Hai-ming XU
%A Jun ZHU
%J Journal of Zhejiang University SCIENCE B
%V 9
%N 12
%P 931-937
%@ 1673-1581
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0820045

TY - JOUR
T1 - Influence of outliers on QTL mapping for complex traits
A1 - Yousaf HAYAT
A1 - Jian YANG
A1 - Hai-ming XU
A1 - Jun ZHU
J0 - Journal of Zhejiang University Science B
VL - 9
IS - 12
SP - 931
EP - 937
%@ 1673-1581
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0820045


Abstract: 
A method was proposed for the detection of outliers and influential observations in the framework of a mixed linear model, prior to the quantitative trait locus (QTL) mapping analysis. We investigated the impact of outliers on QTL mapping for complex traits in a mouse BXD population, and observed that the dropping of outliers could provide the evidence of additional QTL and epistatic loci affecting the 1stBrain-OB and the 2ndBrain-OB in a cross of the abovementioned population. The results could also reveal a remarkable increase in estimating heritabilities of QTL in the absence of outliers. In addition, simulations were conducted to investigate the detection powers and false discovery rates (FDRs) of QTLs in the presence and absence of outliers. The results suggested that the presence of a small proportion of outliers could increase the FDR and hence decrease the detection power of QTLs. A drastic increase could be obtained in the estimates of standard errors for position, additive and additive× environment interaction effects of QTLs in the presence of outliers.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B, 57:289-300.

[2] Cao, G.Q., Zhu, J., He, C.X., Gao, Y.M., Wu, P., 2001. Study on epistatic effects and QTL(environment interaction effects of QTLs for panicle length in rice (Oryza sativa L.). J. Zhejiang Univ. (Agric. & Life Sci.), 27(1):55-61.

[3] Cheng, R., Park, N., Hodge, S.E., Juo, S.H.H., 2003. Comparison of the linkage results of two phenotypic constructs from longitudinal data in the Framingham Heart Study: analyses on data measured at three time points and on the average of three measurements. BMC Genet., 4(Suppl. 1):S20.

[4] Cook, R.D., 1977. Detection of influential observations in linear regression. Technometrics, 19(1):15-18.

[5] Doerge, R.W., Churchill, G.A., 1996. Permutation tests for multiple loci affecting a quantitative character. Genetics, 142:285-294.

[6] Fernandes, E., Pacheco, A., Penha-Gonçalves, C., 2007. Mapping of quantitative trait loci using the skew-normal distribution. J. Zhejiang Univ. Sci. B, 8(11):792-801.

[7] Hadi, A.S., Simonoff, J.S., 1993. Procedures for the identification of multiple outliers in linear models. J. Am. Stat. Assoc., 88(424):1264-1272.

[8] Haley, C.S., Knott, S.A., 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking marker. Heredity, 69:315-324.

[9] Hayat, Y., Salahuddin, Mahmood, Q., Islam, E., Yang, J., 2007. Comparative study of outliers based on statistical methods to evaluate and select the optimum regression model for fertilizers utilization. Scientific Research Monthly, 3:81-84.

[10] Jansen, R.C., Stam, P., 1994. High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 136:1447-1455.

[11] Lander, E.S., Botstein, D., 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121(1):185-199.

[12] Li, Z.K., Luo, L.J., Mei, H.W., Wang, D.L., Shu, Q.Y., Tabien, R., Zhong, D.B., Ying, C.S., Stansel, J.W., Khush, G.S., Paterson, A.H., 2001. Over-dominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics, 158:1737-1753.

[13] Pérez-Enciso, M., Toro, M.A., 1999. Robust QTL effect estimation using the Minimum Distance method. Heredity, 83(3):347-353.

[14] SAS, 1999. SAS STAT User’s Guide. Versions 7 and 8. SAS Institute Inc., Cary, NC, USA, p.2118.

[15] Schabenberger, O., 2004. Mixed Model Influence Diagnostics. Proceedings of the twenty-Ninth Annual SAS Users Group International Conference, May 9-12, Montreal. SAS Institute Inc., Cary, NC, USA, Paper 189-29, p.1-17.

[16] Searle, S.R., Casella, G., McCulloch, C.E., 1992. Variance Components. John Wiley & Sons, New York.

[17] Tilquin, P., Coppieters, W., Elsen, J.M., Lantier, F., Moreno, C., Baret, P.V., 2001. Statistical powers of QTL mapping methods applied to bacteria counts. Genet. Res. Camb., 78:303-316.

[18] Wang, D.L., Zhu, J., Li, Z.K., Paterson, H.A., 1999. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor. Appl. Genet., 99(7-8):1255-1264.

[19] Williams, R.W., Airey, D.C., Kulkarni, A., Zhou, G., Lu, L., 2001. Genetic dissection of the olfactory bulbs of mice: QTLs on four chromosomes modulate bulb size. Behav. Genet., 31(1):61-77.

[20] Yang, J., Zhu, J., William, R., 2007. Mapping genetic architecture of complex trait in experimental populations. Bioinformatics, 23(12):1527-1536.

[21] Zeng, Z.B., 1994. Precision mapping of quantitative traitloci. Genetics, 136:1457-1468.

[22] Zewotir, T., Galpin, J.S., 2005. Influence diagnostics for linear mixed model. J. Data Sci., 3:153-177.

[23] Zewotir, T., Galpin, J.S., 2007. A unified approach on residuals, leverages and outliers in the linear mixed model. Test, 16(1):58-75.

[24] Zhu, J., 1997. Analysis Methods for Genetic Models. Agricultural Publication House of China, Beijing, p.160 (in Chinese).

[25] Zhu, J., Weir, B.S., 1994a. Analysis of cytoplasmic and maternal effects. I. A genetic model for diploid plant seeds and animals. Theor. Appl. Genet., 89(2-3):153-159.

[26] Zhu, J., Weir, B.S., 1994b. Analysis of cytoplasmic and maternal effects. II. Genetic model for triploid endosperms. Theor. Appl. Genet., 89(2-3):160-166.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE