CLC number: Q943
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 11
Clicked: 6144
MAO Chuan-zao, YANG Ling, ZHENG Bing-song, WU Yun-rong, LIU Fei-yan, YI Ke-ke, WU Ping. Comparative mapping of QTLs for Al tolerance in rice and identification of positional Al-induced genes[J]. Journal of Zhejiang University Science A, 2004, 5(6): 634-643.
@article{title="Comparative mapping of QTLs for Al tolerance in rice and identification of positional Al-induced genes",
author="MAO Chuan-zao, YANG Ling, ZHENG Bing-song, WU Yun-rong, LIU Fei-yan, YI Ke-ke, WU Ping",
journal="Journal of Zhejiang University Science A",
volume="5",
number="6",
pages="634-643",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.0634"
}
%0 Journal Article
%T Comparative mapping of QTLs for Al tolerance in rice and identification of positional Al-induced genes
%A MAO Chuan-zao
%A YANG Ling
%A ZHENG Bing-song
%A WU Yun-rong
%A LIU Fei-yan
%A YI Ke-ke
%A WU Ping
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 6
%P 634-643
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.0634
TY - JOUR
T1 - Comparative mapping of QTLs for Al tolerance in rice and identification of positional Al-induced genes
A1 - MAO Chuan-zao
A1 - YANG Ling
A1 - ZHENG Bing-song
A1 - WU Yun-rong
A1 - LIU Fei-yan
A1 - YI Ke-ke
A1 - WU Ping
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 6
SP - 634
EP - 643
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.0634
Abstract: Aluminum (Al) toxicity is the major factor limiting crop productivity in acid soils. In this study, a recombinant inbreed line (RIL) population derived from a cross between an Al sensitive lowland indica rice variety IR1552 and an Al tolerant upland japonica rice variety Azucena, was used for mapping quantitative trait loci (QTLs) for Al tolerance. Three QTLs for relative root length (RRL) were detected on chromosome 1, 9, 12, respectively, and 1 QTL for root length under Al stress is identical on chromosome 1 after one week and two weeks stress. Comparison of QTLs on chromosome 1 from different studies indicated an identical interval between C86 and RZ801 with gene(s) for Al tolerance. This interval provides an important start point for isolating genes responsible for Al tolerance and understanding the genetic nature of Al tolerance in rice. Four Al induced ESTs located in this interval were screened by reverse Northern analysis and confirmed by Northern analysis. They would be candidate genes for the QTL.
[1] de la Fuente, J.M., Ramirez-Rodriguez, V., Cabrera-Ponce, J.L., Herrera-Estrella, L., 1997. Aluminum tolerance in transgenic plants by alteration of citrate synthesis.Science,276:1566-1568.
[2] Delhaize, E., Ryan, P.R., Randall, P.J., 1993. Aluminum tolerance in wheat (Triticum aestivumL.) II. Aluminum-stimulated excretion of malic acid from root apices.Plant Physiol.,103:695-702.
[3] Ditt, R.F., Nester, E.W., Comai, L., 2001. Plant gene expression response toAgrobacterium tumefaciens.Proc. Natl. Acad. Sci. USA,98:10954-10959.
[4] Ezaki, B., Gardner, R.C., Ezaki, Y., Matsumoto, H., 2000. Expression of aluminum-induced genes in transgenicArabidopsisplants can ameliorate aluminum stress and/or oxidative stress.Plant Physiol.,122:657-665.
[5] Ezaki, B., Katsuhara, M., Kawamura, M., Matsumoto, H., 2001. Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity inArabidopsis.Plant Physiol.,127:918-927.
[6] Ezaki, B., Sivaguru, M., Ezaki, Y., Matsumoto, H., Gardner, R.C., 1999. Acquisition of aluminum tolerance inSaccharomyces cerevisiaeby expression of the BCB or NtGDI1 gene derived from plants.FEMS Microbiol. Lett.,171:81-87.
[7] Foy, C.D., 1988. Plant adaptation to acid aluminum-toxic soils.Commun Soil Sci Plant Anal,19:959-987.
[8] Hamel, F., Breton, C., Houde, M., 1998. Isolation and characterization of wheat aluminum-regulated genes: possible involvement of aluminum as a pathogenesis response elicitor.Planta,205:531-538.
[9] IRRI (Internatioal Rice Research Institute), 1978. Annual Report for 1977. Los Bavos, the Philippines.
[10] Kader, J.C., 1997. Lipid transfer proteins: a puzzling family of plant proteins.Trends Plant Sci.,2:66-70.
[11] Kristensen, A.K., Brunstedt, J., Nielsen, K.K., Roepstorff, P., Mikkelsen, J.D., 2000. Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves.Plant Sci.,155:31-40.
[12] Kurepa, J., Walker, J.M., Smalle, J., Gosink, M.M., Davis, S.J., Durham, T.L., Sung, D.Y., Vierstra, R.D., 2003. The small ubiquitin-like modifier (SUMO) protein modification system inArabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress.J. Biol. Chem.,278:6862-6872.
[13] Ma, J.F., Shen, R., Zhao, Z., Wissuwa, M., Takeuchi, Y., Ebitani, T., Yano, M., 2002. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance.Plant Cell Physiol.,43:652-659.
[14] Mao, C.Z., Cheng, S.H., 1999. Analysis of accuracy and influence factor in QTL mapping of agronomic traits in rice (Oryza sativaL.).Journal of agricultural biotechnology,7:386-394 (in Chinese).
[15] Matsumoto, H., 2000. Cell biology of aluminum toxicity and tolerance in higher plants.Int. Rev. Cytol.,200:1-46.
[16] Milla, M.A.R., Butler, E., Huete, A.R., Wilson, C.F., Anderson, O., Gustafson, J.P., 2002. Expressed sequence tag-based gene expression analysis under aluminum stress in rye.Plant Physiol.,130:1706.
[17] Nelson, J.C., 1997. QGENE: software for marker-based genomic analysis and breeding.Mol. Breed.,3:239-245.
[18] Nguyen, B.D., Brar, D.S., Bui, B.C., Nguyen, T.V., Pham, L.N., Nguyen, H.T., 2003. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, ORYZA RUFIPOGON Griff., into indica rice (Oryza sativaL.).Theor. Appl. Genet.,106583-593.
[19] Nguyen, V.T., Burow, M.D., Nguyen, H.T., Le, B.T., Le, T.D., Paterson, A.H., 2001. Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativaL.).Theor. Appl. Genet.,102:1002-1010.
[20] Nguyen, V.T., Nguyen, B.D., Sarkarung, S., Martinez, C., Paterson, A.H., Nguyen, H.T., 2002. Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds.Mol. Genet. Genomics,267:772-780.
[21] Ortiz-Lopez, A., Chang, H., Bush, D.R., 2000. Amino acid transporters in plants.Biochim. Biophys. Acta,1465:275-280.
[22] Parker, D.R., Norvell, W.A., Chaney, R.L., 1995. Geochem-PC: A Chemical Speciation Program for IBM-Compatibles.In: Loeppert R.H., Schwab, A.P., and Goldberg, S, ed., Chemical Equilibrium and Reaction Models. Soil Science Society of America, Madison, WI, p.253-269.
[23] Richards, K.D., Schott, E.J., Sharma, Y.K., Davis, K.R., Gardner, R.C., 1998. Aluminum induces oxidative stress genes inArabidopsis thaliana.Plant Physiol.,116:409-418.
[24] Sambrook, J., Russeel, D.W., 2001. Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press, New York.
[25] Sasaki, T., Ezaki, B., Matsumoto, H., 2002. A gene encoding multidrug resistance (MDR)-like protein is induced by aluminum and inhibitors of calcium flux in wheat.Plant Cell Physiol.,43:177-185.
[26] Sasaki, T., Takai, Y., 1998. The Rho small G protein family-Rho GDI system as a temporal and spatial deter minant for cytoskeletal control.Biochem. Biophys. Res. Commun.,245:641-645.
[27] Watt, D.A., 2003. Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress.J Exp. Bot.,54:1163-1174.
[28] Wu, J., Maehara, T., Shimokawa, T., Yamamoto, S., Harada, C., Takazaki, Y., Ono, N., Mukai, Y., Koike, K., Yazaki, J., Fujii, F., Shomura, A., Ando, T., Kono, I., Waki, K., Yamamoto, K., Yano, M., Matsumoto, T., Sasaki, T., 2002. A comprehensive rice transcript map containing 6591 expressed sequence tag sites.Plant Cell,14:525-535.
[29] Wu, P., Hu, B., Liao, C.Y., Zhu, J.M., Wu, Y.R., Senadhira, D., Paterson, A., 1998. Characterization of tissue tolerance to iron by molecular markers in different lines of rice.Plant and Soil,203:217-226.
[30] Wu, P., Liao, C.Y., Hu, B., Yi, K.K., Jin, W.Z., Ni, J.J., He, C., 2000. QTLs and epistasis for aluminum tolerance in rice (Oryza sativaL.) at different seedling stages.Theor. Appl. Genet.,100:1295-1303.
[31] Yoshida, S., Forno, D., Cock, J., Gomez, K., 1976. Laboratory Manual for Physiological Studies of Rice. International Rice Research Institute, Manila, Philippines.
[32] Zhang, W.P., Shen, X.Y., Wu, P., Hu, B., Liao, C.Y., 2001. QTLs and epistasis for seminal root length under a different water supply in rice (Oryza sativaL.).Theor. Appl. Genet.,103:118-123.
Open peer comments: Debate/Discuss/Question/Opinion
<1>