CLC number: TP7; P4
On-line Access: 2010-03-29
Received: 2009-04-05
Revision Accepted: 2009-10-23
Crosschecked: 2010-02-25
Cited: 14
Clicked: 6588
Dai-liang Peng, Jing-feng Huang, Alfredo R. Huete, Tai-ming Yang, Ping Gao, Yan-chun Chen, Hui Chen, Jun Li, Zhan-yu Liu. Spatial and seasonal characterization of net primary productivity and climate variables in southeastern China using MODIS data[J]. Journal of Zhejiang University Science B, 2010, 11(4): 275-285.
@article{title="Spatial and seasonal characterization of net primary productivity and climate variables in southeastern China using MODIS data",
author="Dai-liang Peng, Jing-feng Huang, Alfredo R. Huete, Tai-ming Yang, Ping Gao, Yan-chun Chen, Hui Chen, Jun Li, Zhan-yu Liu",
journal="Journal of Zhejiang University Science B",
volume="11",
number="4",
pages="275-285",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0910501"
}
%0 Journal Article
%T Spatial and seasonal characterization of net primary productivity and climate variables in southeastern China using MODIS data
%A Dai-liang Peng
%A Jing-feng Huang
%A Alfredo R. Huete
%A Tai-ming Yang
%A Ping Gao
%A Yan-chun Chen
%A Hui Chen
%A Jun Li
%A Zhan-yu Liu
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 4
%P 275-285
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0910501
TY - JOUR
T1 - Spatial and seasonal characterization of net primary productivity and climate variables in southeastern China using MODIS data
A1 - Dai-liang Peng
A1 - Jing-feng Huang
A1 - Alfredo R. Huete
A1 - Tai-ming Yang
A1 - Ping Gao
A1 - Yan-chun Chen
A1 - Hui Chen
A1 - Jun Li
A1 - Zhan-yu Liu
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 4
SP - 275
EP - 285
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0910501
Abstract: We developed a sophisticated method to depict the spatial and seasonal characterization of net primary productivity (NPP) and climate variables. The role of climate variability in the seasonal variation of NPP exerts delayed and continuous effects. This study expands on this by mapping the seasonal characterization of NPP and climate variables from space using geographic information system (GIS) technology at the pixel level. Our approach was developed in southeastern China using moderate-resolution imaging spectroradiometer (MODIS) data. The results showed that air temperature, precipitation and sunshine percentage contributed significantly to seasonal variation of NPP. In the northern portion of the study area, a significant positive 32-d lagged correlation was observed between seasonal variation of NPP and climate (P<0.01), and the influences of changing climate on NPP lasted for 48 d or 64 d. In central southeastern China, NPP showed 16-d, 48-d, and 96-d lagged correlation with air temperature, precipitation, and sunshine percentage, respectively (P<0.01); the influences of air temperature and precipitation on NPP lasted for 48 d or 64 d, while sunshine influence on NPP only persisted for 16 d. Due to complex topography and vegetation distribution in the southern part of the study region, the spatial patterns of vegetation-climate relationship became complicated and diversiform, especially for precipitation influences on NPP. In the northern part of the study area, all vegetation NPP had an almost similar response to seasonal variation of air temperature except for broad crops. The impacts of seasonal variation of precipitation and sunshine on broad and cereal crop NPP were slightly different from other vegetation NPP.
[1]Abdallah, C., Chorowicz, J., Bou, K.R., Khawlie, M., 2005. Detecting major terrain parameters relating to mass movements’ occurrence using GIS, remote sensing and statistical correlations, case study Lebanon. Remote Sens. Environ., 99(4):448-461.
[2]Ahl, D.E., Gower, S.T., Mackay, D.S., Burrows, S.N., Norman, J.M., Diak, G.R., 2004. Heterogeneity of light use efficiency in a northern Wisconsin forest: implications for modeling net primary production with remote sensing. Remote Sens. Environ., 93(1-2):168-178.
[3]Bartelink, H.H., Kramer, K., Mohren, G.M.J., 1997. Applicability of the radiation-use efficiency concept for simulating growth of forest stands. Agric. Forest Meteorol., 88(1-4):169-179.
[4]Bonan, G.B., 1995. Land-atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model. J. Geophys. Res., 100(D2):2817-2831.
[5]Canadell, J.G., Mooney, H.A., Baldochi, D.D., Berry, J.A., Ehleringer, J.R., Field, C.B., Gower, S.T., Hollinger, D.Y., Hunt, J.E., Jackson, R.B., et al., 2000. Carbon metabolism of the terrestrial biosphere: a multi-technique approach for improved understanding. Ecosystems, 3(2):115-130.
[6]Ciais, P., White, J.W.C., Trolier, M., Francey, R.J., Berry, J.A., Randall, D.R., Sellers, P.J., Collatz, J.G., Schimel, D.S., Tans, P.P., 1995. Partitioning of ocean and land uptake of CO2 as inferred by delta-C-13 measurements from the NOAA climate monitoring and diagnostics laboratory global air sampling network. J. Geophys. Res., 100(D3):5051-5070.
[7]Fang, J., Piao, S., Tang, Z., Peng, C., Ji, W., 2001. Interannual variability in net primary production and precipitation. Science, 293(5536):1723a.
[8]Field, C.B., Randerson, J.T., Malmström, C.M., 1995. Global net primary production: combining ecology and remote sensing. Remote Sens. Environ., 51(1):74-88.
[9]Fik, T.J., Mulligan, G.F., 1998. Functional form and spatial interaction models. Environ. Plan. A, 30(8):1497-1507.
[10]Foley, J.A., 1994. Net primary productivity in the terrestrial biosphere: the application of a global model. J. Geophys. Res., 99(D10):20773-20783.
[11]Hou, G.L., Li, J.Y., Zhang, Y.G., 1993. China Agro-meteorology Resources. China Remin University Press, Beijing, China (in Chinese).
[12]Hu, Z.Z., Sun, J.X., Zhang, Y.S., 1990. Preliminary studies on calorific value and nutrient composition in Tianzhu alpine Polygonum viviparum meadow. Acta Phytoecologica et Geobotanica Sinica, 14(2):185-190.
[13]Huete, A.R., Didan, K., Miura, T., Rodriguez, X., Gao, X., Ferreira, L.G., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83(1-2):195-213.
[14]Hunt, E.R., 1994. Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI. Int. J. Remote Sens., 15(8):1725-1730.
[15]Jensen, M.E., Burman, R.D., Allen, R.G., 1990. Evapotranspiration and Irrigation Water Requirements. ASCE Manuals and Reports on Engineering Practice No. 70. American Society of Civil Engineers, New York, USA, p.112-131.
[16]Keeling, C.D., Chin, J.F.S., Whorf, T.P., 1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382(6587):146-148.
[17]Kindermann, J., Wurth, G., Kohlmaier, G.H., Badeck, F.W., 1996. Interannual variation of carbon exchange fluxes in terrestrial ecosystems. Global Biogeochem. Cy., 10(4):737-755.
[18]Li, J., 2006. Study on the Spatial Distribution of Climatic Variables Based on GIS Technology and Its Application in Calculating Net Primary Productivity in China. PhD Thesis, Zhejiang University, Hangzhou, China (in Chinese).
[19]Lieth, H., 1975. Modeling the Primary Productivity of the World. In: Lieth, H., Whittaker, R.H. (Eds.), Primary Productivity of the Biosphere. Springer, New York, USA, p.237-263.
[20]Liu, S.R., Xu, D.Y., Wang, B., 1993. Impacts of climate change on productivity of forests in China 1: geographic distribution of actual productivity of forest in China. Forest Res., 6(6):634-642 (in Chinese).
[21]Liu, X.A., Yu, G.C., Fan, L.S., Li, Z.Q., He, H.L., G, X.B., Ren, C.Y., 2004. Study on spatialization technology of terrestrial eco-information in China (III): temperature and precipitation. J. Nat. Resourc., 19(6):818-825 (in Chinese).
[22]López-Blanco, J., Villers-Ruiz, L., 1995. Delineating boundaries of environmental units for land management using a geomorphological approach and GIS: a study in Baja California, Mexico. Remote Sens. Environ., 53(2):109-117.
[23]Maisongrande, P., Ruimy, A., Dedieu, G., Saugier, B., 1995. Monitoring seasonal and interannual variations of gross primary productivity using a diagnostic model and remote-sensed data. Tellus B, 47(1-2):178-190.
[24]Malmström, C.M., Thompson, M.V., Juday, G.P., Los, S.O., Randerson, J.T., Field, C.B., 1997. Interannual variation in global-scale net primary production: testing model estimates. Global Biogeochem. Cy., 11(3):367-392.
[25]Mohamed, M.A.A., Babiker, I.S., Chen, Z.M., Ikeda, K., Ohta, K., Kato, K., 2004. The role of climate variability in the inter-annual variation of terrestrial net primary production (NPP). Sci. Total Environ., 332(1-3):123-137.
[26]Neill, C., Piccolo, M.C., Steudler, P.A., Melillo, J.M., Feigl, B.J., Cerri, C.C., 1995. Nitrogen dynamics in soils of forests and active pastures in the Western Brazilian Amazon Basin. Soil Biol. Biochem., 27(9):1167-1175.
[27]Peng, C.H., Apps, M.J., 1999. Modelling the response of net primary productivity (NPP) of boreal forest ecosystems to changes in climate and fire disturbance regimes. Ecol. Model., 122(3):175-193.
[28]Peng, D.L., Huang, J.F., Wang, X.Z., 2007a. Correlative analysis between regional vegetation seasonal fluctuation and climate factors based on MODIS-EVI. Chin. J. Appl. Ecol., 18(5):983-989 (in Chinese).
[29]Peng, D.L., Huang, J.F., Cai, C.X., Deng, R., 2007b. Spatialization on monthly average air temperature in Xinjiang and the analysis of the result. J. Zhejiang Univ. (Sci. Ed.), 34(5):580-584 (in Chinese).
[30]Peng, D.L., Huang, J.F., Cai, C.X., Deng, R., Xu, J.F., 2008. Assessing the response of seasonal variation of net primary productivity to climate using remote sensing data and geographic information system techniques in Xinjiang. J. Integr. Plant Biol., 50(12):1580-1588.
[31]Ruimy, A., Kergoat, L., Bondeau, A., 1999. Comparing global models of terrestrial net primary productivity (NPP): analysis of differences in light absorption and light-use efficiency. Global Change Biol., 5(Suppl. 1):56-64.
[32]Running, S.W., Nemani, R.R., Heinsch, F.A., Zhao, M.S., Reeves, M., Hashimoto, H., 2004. A continuous satellite-derived measure of global terrestrial primary productivity: future science and applications. Bioscience, 54(6):547-560.
[33]Steele, B.M., Reddy, S.K., Nemani, R.R., 2005. A regression strategy for analyzing environmental data generated by spatio-temporal processes. Ecol. Model., 181(2-3):93-108.
[34]Sun, H.S., Huang, J.F., Huete, R.A., Peng, D.L., Zhang, F., 2009. Mapping paddy rice with multi-date moderate-resolution imaging spectroradiometer (MODIS) data in China. J. Zhejiang Univ.-Sci. A, 10(10):1509-1522.
[35]Sun, R., 1998. Research of the Terrestrial Vegetation Net Primary Production (NPP) in China Base on AVHRR-NDVI. PhD Thesis, Beijing Normal University, Beijing, China (in Chinese).
[36]Sun, R., Zhu, Q.J., 2000. Distribution and seasonal change of net productivity in China from April, 1992 to March, 1993. J. Geograph. Sci., 55(1):36-45 (in Chinese).
[37]Sun, R., Zhu, Q.J., 2001. Effect of climate change of terrestrial net primary productivity in China. J. Remote Sens., 5(1):58-62 (in Chinese).
[38]Tian, H., Melillo, J.M., Kicklighter, D.W., McGuire, A.D., Helfrich, J.V.K., Moore, B., Vörösmarty, C.J., 1998. Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature, 396(6712):664-667.
[39]Turner, D.P., Gower, S.T., Cohen, W.B., Gregory, M., Maiersperger, T.K., 2002. Effects of spatial variability in light use efficiency on satellite-based NPP monitoring. Remote Sens. Environ., 80(3):397-405.
[40]Wang, F.M., Huang, J.F., Zhou, Q.F., Wang, X.Z., 2008. Optimal waveband identification for estimation of leaf area index of paddy rice. J. Zhejiang Univ.-Sci. B, 9(12):953-963.
[41]Wolfgang, C., 1999. Net primary productivity model intercomparison activity. Gobal. Change Biol., 5(Suppl. 1):4-6.
[42]Yu, G.C., He, H.L., Liu, X.A., 2004. Atlas for Spatialized Information of Terrestrial Ecosystem in China: Volume of Climatological Elements. Weather Press, Beijing, China, p.18-169 (in Chinese).
[43]Zhang, H., Gao, S.Y., Zheng, Q.H., 2002. Responses of NPP of salinized meadows to global change in hyperarid regions. J. Arid Environ., 50(3):489-498.
[44]Zhang, X.X., Ge, Q.S., Zheng, J.Y., 2005. Impacts and lags of global warming on vegetation in Beijing for last 50 years based on remotely sensed data and phonological information. Acta Ecologica Sin., 24(2):123-130 (in Chinese).
[45]Zhao, M.S., Running, S.W., 2006. Sensitivity of moderate resolution imaging (MODIS) terrestrial primary production to the accuracy of meteorological re-analyses. J. Geophys. Res., 111(G1):G01002.
[46]Zhao, M.S., Heinsch, F.A., Nemani, R.R., Running, S.W., 2005. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ., 95(2):164-176.
Open peer comments: Debate/Discuss/Question/Opinion
<1>