Full Text:   <2886>

CLC number: Q37; Q94

On-line Access: 

Received: 2009-05-06

Revision Accepted: 2009-07-27

Crosschecked: 2009-09-10

Cited: 0

Clicked: 5862

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2009 Vol.10 No.10 P.777-783


A new genetic factor for root gravitropism in rice (Oryza sativa L.)

Author(s):  Jiang-hua SHI, Xi HAO, Zhong-chang WU, Ping WU

Affiliation(s):  State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   jhshi@zju.edu.cn

Key Words:  Oryza sativa L., Root gravitropism, Genetic factor

Jiang-hua SHI, Xi HAO, Zhong-chang WU, Ping WU. A new genetic factor for root gravitropism in rice (Oryza sativa L.)[J]. Journal of Zhejiang University Science B, 2009, 10(10): 777-783.

@article{title="A new genetic factor for root gravitropism in rice (Oryza sativa L.)",
author="Jiang-hua SHI, Xi HAO, Zhong-chang WU, Ping WU",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T A new genetic factor for root gravitropism in rice (Oryza sativa L.)
%A Jiang-hua SHI
%A Zhong-chang WU
%A Ping WU
%J Journal of Zhejiang University SCIENCE B
%V 10
%N 10
%P 777-783
%@ 1673-1581
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0920132

T1 - A new genetic factor for root gravitropism in rice (Oryza sativa L.)
A1 - Jiang-hua SHI
A1 - Xi HAO
A1 - Zhong-chang WU
A1 - Ping WU
J0 - Journal of Zhejiang University Science B
VL - 10
IS - 10
SP - 777
EP - 783
%@ 1673-1581
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0920132

root gravitropism is one of the important factors to determine root architecture. To understand the mechanism underlying root gravitropism, we isolated a rice (Xiushui63) mutant defective in root gravitropism, designated as gls1. Vertical sections of root caps revealed that gls1 mutant displayed normal distribution of amyloplast in the columella cells compared with the wild type. The gls1 mutant was less sensitive to 2,4-dichlorophenoxyacetic acid (2,4-D) and α-naphthaleneacetic acid (NAA) than the wild type. Genetic analysis indicated that the phenotype of gls1 mutant was caused by a single recessive mutation, which is mapped in a 255-kb region between RM16253 and CAPS1 on the short arm of chromosome 4.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Baluška, F., Hasenstein, K.H., 1997. Root cytoskeleton: its role in perception and response to gravity. Planta, 203(s1):S69-S78.

[2] Blancaflor, E., Masson, P.H., 2003. Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol., 133(4):1677-1690.

[3] Boonsirichai, K., Guan, C., Chen, R., Masson, P.H., 2002. Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechano-sensing and signal transmission in plants. Annu. Rev. Plant Biol., 53(1):421-447.

[4] Caspar, T., Pickard, B., 1989. Gravitropism in a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing. Planta, 177(2):185-197.

[5] Chen, R.J., Hilson, P., Sedbrook, J., Rosen, E., Caspar, T., Masson, P., 1998. The Arabidopsis thaliana AGRAVITROPIC1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc. Natl. Acad. Sci. USA, 95(25):15112-15117.

[6] Chen, R.J., Guan, C.H., Boonsirichai, K., Masson, P.H., 2002. Complex physiological and molecular processes underlying root gravitropism. Plant Mol Boil., 49(3/4):305-317.

[7] Hao, Z., Ichii, M., 1999. A mutant RM109 of rice (Oryza sativa L.) exhibiting altered lateral root initiation and gravitropism. Jpn. J. Crop Sci., 68(2):245-252.

[8] Harrison, B., Masson, P., 2008. ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J., 53(2):380-392.

[9] Hobbie, L.J., 1998. Auxin: molecular genetic approaches in Arabidopsis. Plant Physiol. Biochem., 36(1-2):91-102.

[10] Hobbie, L., Estelle, M., 1995. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J., 7(2): 211-220.

[11] Hobbie, L., McGovern, M., Hurwitz, L.R., Pierro, A., Liu, N.Y., Bandyopadhyay, A., Estelle, M., 2000. The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. Development, 127(1):23-32.

[12] Jia, L., Zhang, B.T., Mao, C.Z., Li, J.H., Wu, Y.R., Wu, P., Wu, Z.C., 2008. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.). Planta, 228(1):51-59.

[13] Kiss, J., Hertel, R., Sack, F., 1989. Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana. Planta, 177(2):198-206.

[14] Kiss, J., Guisinger, M., Miller, A., Stackhouse, K., 1997. Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis. Plant Cell Physiol., 38(5):518-525.

[15] Leyser, H.M., Pickett, F.B., Dharmasiri, S., Estelle, M., 1996. Mutations in the axr3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J., 10(3):403-413.

[16] Lincoln, C., Britton, J.H., Estelle, M., 1990. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell., 2(11):1071-1080.

[17] Lynch, J., 1995. Root architecture and plant productivity. Plant Physiol., 109(1):7-13.

[18] MacCleery, S., Kiss, J., 1999. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis. Plant Physiol., 120(1):183-192.

[19] Marchant, A., Bhalerao, R., Casimiro, I., Eklof, J., Casero, P.J., Bennett, M., Sandlberg, G., 2002. AUX1 promotes lateral root formation by facilitating indole-2-acetic distribution between sink and source tissues in the Arabidopsis seedlings. Plant Cell., 14(3):589-597.

[20] Marchant, A., Kargul, J., May, S.T., Muller, P., Delbarre, A., Perrot-Rechenmann, C., Bennett, M., 1999. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J., 18(8): 2066-2073.

[21] Morita, M.T., Tasaka, M., 2004. Gravity sensing and signaling. Curr. Opin. Plant Biol., 7(6):712-718.

[22] Perrin, R.M., Young, L.S., Murthyum, N., Harrison, B.R., Wang, Y., Will, J.L., Masson, P.H., 2005. Gravity signal transduction in primary roots. Ann. Bot., 96(5):737-743.

[23] Rubio, G., Walk, T., Ge, Z.Y., Yan, X.L., Liao, H., Lynch, J.P., 2001. Root gravitropism and below-grown competition among neighbouring plants: a modeling approach. Ann. Bot., 88(5):929-940.

[24] Stanga, J.P., Boonsirichai, K., Sedbrook, J.C., Otegui, M.S., Masson, P.H., 2009. A Role for the TOC complex in arabidopsis root gravitropism. Plant Physiol., 149(4): 1896-1905.

[25] Vitha, S., Zhao, L.M., Sack, F.D., 2000. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants. Plant Physiol., 122(2):453-461.

[26] Vitha, S., Yang, M., Sack, F.D., Kiss, J.Z., 2007. Gravitropism in starch-excess mutant of Arabidopsis thaliana. Am. J. Bot., 94(4):590-598.

[27] Wang, H., Taketa, S., Miyao, A., Hirochika, H., Ichii, M., 2006. Isolation of a novel lateral-rootless mutant in rice (Oryza sativa L.) with reduced sensitivity to auxin. Plant Sci., 170(1):70-77.

[28] Wilson, A.K., Pickett, F.B., Turner, J.C., Estelle, M., 1990. A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol. Gen. Genet., 222(2-3):377-383.

[29] Woodward, A.W., Bartel, B., 2005. Auxin: regulation, action, and interaction. Ann. Bot., 95(5):707-735.

[30] Xu, M., Zhu, L., Shou, H.X., Wu, P., 2005. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol., 46(10):1674-1681.

[31] Yamamoto, M., Yamamoto, K.T., 1998. Differential effects of 1-naphthaleneacetic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid on the gravitropic response of roots in an auxin-resistant mutant of Arabidopsis, auxl. Plant Cell Physiol., 39(6):660-664.

[32] Yang, X., Lee, S., So, J., Dharmasiri, N., Ge, L., Jensen, C., Hangarter, R., Hobbie, L., Estelle, M., 2004. The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1. Plant J., 40(5):772-782.

[33] Yoshida, S., Forno, D.A., Cock, J.H., Gomez, K.A., 1976. Laboratory Manual for Physiological Studies of Rice, 3rd Ed. The International Rice Research Institute, Manila, the Philippines, p.1-83.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE