CLC number: S476+.9
On-line Access: 2015-04-03
Received: 2014-06-10
Revision Accepted: 2014-12-10
Crosschecked: 2015-03-27
Cited: 1
Clicked: 4173
Citations: Bibtex RefMan EndNote GB/T7714
Hao Hu, Yang Xu, Huang-ping Lu, Rui Xiao, Xiao-dong Zheng, Ting Yu. Evaluation of yeasts from Tibetan fermented products as agents for biocontrol of blue mold of Nashi pear fruits[J]. Journal of Zhejiang University Science B, 2015, 16(4): 275-285.
@article{title="Evaluation of yeasts from Tibetan fermented products as agents for biocontrol of blue mold of Nashi pear fruits",
author="Hao Hu, Yang Xu, Huang-ping Lu, Rui Xiao, Xiao-dong Zheng, Ting Yu",
journal="Journal of Zhejiang University Science B",
volume="16",
number="4",
pages="275-285",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400162"
}
%0 Journal Article
%T Evaluation of yeasts from Tibetan fermented products as agents for biocontrol of blue mold of Nashi pear fruits
%A Hao Hu
%A Yang Xu
%A Huang-ping Lu
%A Rui Xiao
%A Xiao-dong Zheng
%A Ting Yu
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 4
%P 275-285
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400162
TY - JOUR
T1 - Evaluation of yeasts from Tibetan fermented products as agents for biocontrol of blue mold of Nashi pear fruits
A1 - Hao Hu
A1 - Yang Xu
A1 - Huang-ping Lu
A1 - Rui Xiao
A1 - Xiao-dong Zheng
A1 - Ting Yu
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 4
SP - 275
EP - 285
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400162
Abstract: A total of 20 strains of yeast isolated from Tibetan fermented products were screened for antagonism against blue mold of pear caused by Penicillium expansum. Six isolates that inhibited incidence of postharvest decay by 35% or more were selected for further screening. Among them, the most effective was Rhodotorula mucilaginosa. The results showed that washed cell suspensions of R. mucilaginosa yielded better antagonistic efficacy than unwashed cell-culture mixtures, cell-free culture filtrates, and autoclaved cell cultures. biocontrol activity improved with increasing concentrations of incubated cells. The best concentration was 1×108 cells/ml, at which the incidence of decay was only 16.7% after 6 d of incubation. The germination of conidia of P. expansum in vitro was significantly inhibited by both washed cell-suspensions and unwashed cell-culture mixtures. Rapid colonization by yeast at different concentrations showed a relationship between yeast-cell concentration and biocontrol activity. Although the titratable acidity of pear fruits increased after treatment, R. mucilaginosa did not affect the total soluble solids or ascorbic acid content. This is the first study to report that the yeast R. mucilaginosa from Tibet Autonomous Region of China may have potential as an antagonist to control the postharvest decay of pear fruits.
[1]An, B., Li, B., Qin, G., et al., 2012. Exogenous calcium improves viability of biocontrol yeasts under heat stress by reducing ROS accumulation and oxidative damage of cellular protein. Curr. Microbiol., 65(2):122-127.
[2]Barbey, C., Crepin, A., Cirou, A., et al., 2012. Catabolic pathway of gamma-caprolactone in the biocontrol agent Rhodococcus erythropolis. J. Proteome Res., 11(1):206-216.
[3]Bencheqroun, S.K., Baji, M., Massart, S., et al., 2007. In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: evidence for the involvement of competition for nutrients. Postharvest Biol. Technol., 46(2):128-135.
[4]Calvente, V., Benuzzi, D., de Tosetti, M.I.S., 1999. Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. Int. Biodeterior. Biodegrad., 43(4):167-172.
[5]Calvo-Garrido, C., Viñas, I., Elmer, P., et al., 2013. Candida sake CPA-1 and other biologically based products as potential control strategies to reduce sour rot of grapes. Lett. Appl. Microbiol., 57(4):356-361.
[6]Castoria, R., Morena, V., Caputo, L., et al., 2005. Effect of the biocontrol yeast Rhodotorula glutinis strain LS11 on patulin accumulation in stored apples. Phytopathology, 95(11):1271-1278.
[7]Dal Bello, G., Monaco, C.M., Rollan, M.C., et al., 2008. Biocontrol of postharvest grey mould on tomato by yeasts. J. Phytopathol., 156(5):257-263.
[8]D'Aquino, S., Fadda, A., Barberis, A., et al., 2013. Combined effects of potassium sorbate, hot water and thiabendazole against green mould of citrus fruit and residue levels. Food Chem., 141(2):858-864.
[9]Droby, S., Cohen, L., Daus, A., et al., 1998. Commercial testing of aspire: a yeast preparation for the biological control of postharvest decay of citrus. Biol. Control, 12(2):97-101.
[10]Droby, S., Wisniewski, M., Macarisin, D., et al., 2009. Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol. Technol., 52(2):137-145.
[11]Hershkovitz, V., Sela, N., Taha-Salaime, L., et al., 2013. De-novo assembly and characterization of the transcriptome of Metschnikowia fructicola reveals differences in gene expression following interaction with Penicillium digitatum and grapefruit peel. BMC Genomics, 14(1):168.
[12]Ippolito, A., Nigro, F., 2000. Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Prot., 19(8-10):715-723.
[13]Jamalizadeh, M., 2011. A review of mechanisms of action of biological control organisms against post-harvest fruit spoilage. EPPO Bull., 41(1):65-71.
[14]Janisiewicz, W.J., Korsten, L., 2002. Biological control of postharvest diseases of fruits. Annu. Rev. Phytopathol., 40:411-441.
[15]Janisiewicz, W.J., Jurick, W.M., Peter, K.A., et al., 2014. Yeasts associated with plums and their potential for controlling brown rot after harvest. Yeast, 31(6):207-218.
[16]Jurick, W.M., Vico, I., Gaskins, V.L., et al., 2010. Purification and biochemical characterization of polygalacturonase produced by Penicillium expansum during postharvest decay of ‘Anjou’ pear. Phytopathology, 100(1):42-48.
[17]Lennox, C.L., Spotts, R.A., Booyse, M., 2004. Incidence of postharvest decay of ‘d'Anjou’ pear and control with a thiabendazole drench. Plant Dis., 88(5):474-478.
[18]Li, R.P., Zhang, H.Y., Liu, W.M., et al., 2011. Biocontrol of postharvest gray and blue mold decay of apples with Rhodotorula mucilaginosa and possible mechanisms of action. Int. J. Food Microbiol., 146(2):151-156.
[19]Liu, D., Zhang, D., Liu, G., et al., 2013. Influence of heat stress on leaf ultrastructure, photosynthetic performance, and ascorbate peroxidase gene expression of two pear cultivars (Pyrus pyrifolia). J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 14(12):1070-1083.
[20]Lu, H., Lu, L., Zeng, L., et al., 2014. Effect of chitin on the antagonistic activity of Rhodosporidium paludigenum against Penicillium expansum in apple fruit. Postharvest Biol. Technol., 92:9-15.
[21]Lutz, M.C., Robiglio, A., Sosa, M.C., et al., 2011. Two selection strategies of epiphytic native yeasts with potential biocontrol capacity against postharvest pear pathogens in Patagonia. In: Sánchez, E.E., Sugar, D., Webster, A.D. (Eds.), ISHS Acta Horticulturae 909: XI International Pear Symposium. Patagonia, Argentina, p.761-768.
[22]Manso, T., Nunes, C., 2011. Metschnikowia andauensis as a new biocontrol agent of fruit postharvest diseases. Postharvest Biol. Technol., 61(1):64-71.
[23]Pérez, A.G., Sanz, C., Rios, J.J., et al., 1999. Effects of ozone treatment on postharvest strawberry quality. J. Agric. Food Chem., 47(4):1652-1656.
[24]Porat, R., Weiss, B., Cohen, L., et al., 1999. Effects of ethylene and 1-methylcyclopropene on the postharvest qualities of ‘Shamouti’ oranges. Postharvest Biol. Technol., 15(2):155-163.
[25]Robiglio, A., Sosa, M.C., Lutz, M.C., et al., 2011. Yeast biocontrol of fungal spoilage of pears stored at low temperature. Int. J. Food Microbiol., 147(3):211-216.
[26]Sanderson, P.G., Spotts, R.A., 1995. Postharvest decay of winter pear and apple fruit caused by species of Penicillium. Phytopathology, 85(1):103-110.
[27]Sansone, G., Rezza, I., Calvente, V., et al., 2005. Control of Botrytis cinerea strains resistant to iprodione in apple with rhodotorulic acid and yeasts. Postharvest Biol. Technol., 35(3):245-251.
[28]Sayago, J.E., Ordoñez, R.M., Kovacevich, L.N., et al., 2012. Antifungal activity of extracts of extremophile plants from the Argentine Puna to control citrus postharvest pathogens and green mold. Postharvest Biol. Technol., 67:19-24.
[29]Sharma, R.R., Singh, D., Singh, R., 2009. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol. Control, 50(3):205-221.
[30]Spadaro, D., Gullino, M.L., 2004. State of the art and future prospects of the biological control of postharvest fruit diseases. Int. J. Food Microbiol., 91(2):185-194.
[31]Sugar, D., Basile, S.R., 2011. Orchard calcium and fungicide treatments mitigate effects of delayed postharvest fungicide applications for control of postharvest decay of pear fruit. Postharvest Biol. Technol., 60(1):52-56.
[32]Vero, S., Garmendia, G., González, M.B., et al., 2013. Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus×domestica). FEMS Yeast Res., 13(2):189-199.
[33]Wang, Y., Yu, T., Li, Y., et al., 2009. Postharvest biocontrol of Alternaria alternata in Chinese winter jujube by Rhodosporidium paludigenum. J. Appl. Microbiol., 107(5):1492-1498.
[34]Wang, Y.F., Yu, T., Xia, J.D., et al., 2010. Biocontrol of postharvest gray mold of cherry tomatoes with the marine yeast Rhodosporidium paludigenum. Biol. Control, 53(2):178-182.
[35]Wang, Y.F., Tang, F., Xia, J.D., et al., 2011. A combination of marine yeast and food additive enhances preventive effects on postharvest decay of jujubes (Zizyphus jujuba). Food Chem., 125(3):835-840.
[36]Wilson, C.L., Wisniewski, M.E., 1989. Biological control of postharvest diseases of fruits and vegetables: an emerging technology. Annu. Rev. Phytopathol., 27:425-441.
[37]Wilson, C.L., Wisniewski, M.E., Biles, C.L., et al., 1991. Biological control of post-harvest diseases of fruits and vegetables: alternatives to synthetic fungicides. Crop Prot., 10(3):172-177.
[38]Wilson, C.L., Wisniewski, M.E., Droby, S., et al., 1993. A selection strategy for microbial antagonists to control postharvest diseases of fruits and vegetables. Sci. Hort., 53(3):183-189.
[39]Wilson, C.L., Wisniewski, M., Droby, S., et al., 2011. Historical perspective on biological control of postharvest diseases-past, present, and future. In: Wisniewski, M., Droby, S. (Eds.), ISHS Acta Horticulturae 905: International Symposium on Biological Control of Postharvest Diseases: Challenges and Opportunities. Leesburg, VA, USA, p.23-28.
[40]Wisniewski, M., Biles, C., Droby, S., et al., 1991. Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii. I. Characterization of attachment to Botrytis cinerea. Physiol. Mol. Plant Pathol., 39(4):245-258.
[41]Wisniewski, M.E., Wilson, C.L., 1992. Biological-control of postharvest diseases of fruits and vegetables-recent advances. Hortscience, 27(2):94-98.
[42]Wszelaki, A.L., Mitcham, E.J., 2000. Effects of superatmospheric oxygen on strawberry fruit quality and decay. Postharvest Biol. Technol., 20(2):125-133.
[43]Xu, X.B., Chan, Z.L., Xu, Y., et al., 2008. Effect of Pichia membranaefaciens combined with salicylic acid on controlling brown rot in peach fruit and the mechanisms involved. J. Sci. Food Agric., 88(10):1786-1793.
[44]Yu, T., Zheng, X.D., 2006. Salicylic acid enhances biocontrol efficacy of the antagonist Cryptococcus laurentii in apple fruit. J. Plant Growth Regul., 25(2):166-174.
[45]Yu, T., Yu, C., Chen, F.X., et al., 2012. Integrated control of blue mold in pear fruit by combined application of chitosan, a biocontrol yeast and calcium chloride. Postharvest Biol. Technol., 69:49-53.
[46]Yue, X.Y., Liu, G.Q., Zong, Y., et al., 2014. Development of genic SSR markers from transcriptome sequencing of pear buds. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 15(4):303-312.
[47]Zhang, D.P., Spadaro, D., Valente, S., et al., 2011. Cloning, characterization and expression of an exo-1,3-β-glucanase gene from the antagonistic yeast, Pichia guilliermondii strain M8 against grey mold on apples. Biol. Control, 59(2):284-293.
[48]Zhang, D.P., Spadaro, D., Valente, S., et al., 2012. Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens. Int. J. Food Microbiol., 153(3):453-464.
[49]Zhang, H.Y., Zheng, X.D., Xi, Y.F., 2003. Biocontrol of postharvest blue mould rot of pear by Cryptococcus laurentii. J. Hortic. Sci. Biotechnol., 78(6):888-893.
[50]Zhang, H.Y., Zheng, X.D., Fu, C.X., et al., 2005. Postharvest biological control of gray mold rot of pear with Cryptococcus laurentii. Postharvest Biol. Technol., 35(1):79-86.
[51]Zhang, H.Y., Zheng, X.D., Yu, T., 2007. Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control, 18(4):287-291.
[52]Zhang, H.Y., Wang, L., Dong, Y., et al., 2008. Control of postharvest pear diseases using Rhodotorula glutinis and its effects on postharvest quality parameters. Int. J. Food Microbiol., 126(1-2):167-171.
[53]Zhao, J., Xue, Q.H., Shen, G.H., et al., 2012. Evaluation of Streptomyces spp. for biocontrol of gummy stem blight (Didymella bryoniae) and growth promotion of Cucumis melo L. Biocontrol Sci. Technol., 22(1):23-37.
Open peer comments: Debate/Discuss/Question/Opinion
<1>