CLC number: R965
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-06-16
Cited: 0
Clicked: 5963
Darren S. Miller, Anne Michelle Parsons, John Bresland, Paul Herde, Duc Minh Pham, Angel Tan, Hung-yao Hsu, Clive A. Prestidge, Tim Kuchel, Rezaul Begg, Syed Mahfuzul Aziz, Ross N. Butler. A simple and inexpensive enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine[J]. Journal of Zhejiang University Science B, 2015, 16(7): 586-592.
@article{title="A simple and inexpensive enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine",
author="Darren S. Miller, Anne Michelle Parsons, John Bresland, Paul Herde, Duc Minh Pham, Angel Tan, Hung-yao Hsu, Clive A. Prestidge, Tim Kuchel, Rezaul Begg, Syed Mahfuzul Aziz, Ross N. Butler",
journal="Journal of Zhejiang University Science B",
volume="16",
number="7",
pages="586-592",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400290"
}
%0 Journal Article
%T A simple and inexpensive enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine
%A Darren S. Miller
%A Anne Michelle Parsons
%A John Bresland
%A Paul Herde
%A Duc Minh Pham
%A Angel Tan
%A Hung-yao Hsu
%A Clive A. Prestidge
%A Tim Kuchel
%A Rezaul Begg
%A Syed Mahfuzul Aziz
%A Ross N. Butler
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 7
%P 586-592
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400290
TY - JOUR
T1 - A simple and inexpensive enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine
A1 - Darren S. Miller
A1 - Anne Michelle Parsons
A1 - John Bresland
A1 - Paul Herde
A1 - Duc Minh Pham
A1 - Angel Tan
A1 - Hung-yao Hsu
A1 - Clive A. Prestidge
A1 - Tim Kuchel
A1 - Rezaul Begg
A1 - Syed Mahfuzul Aziz
A1 - Ross N. Butler
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 7
SP - 586
EP - 592
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400290
Abstract: Understanding the ecology of the gastrointestinal tract and the impact of the contents on the host mucosa is emerging as an important area for defining both wellness and susceptibility to disease. Targeted delivery of drugs to treat specific small intestinal disorders such as small bowel bacterial overgrowth and targeting molecules to interrogate or to deliver vaccines to the remote regions of the small intestine has proven difficult. There is an unmet need for methodologies to release probes/drugs to remote regions of the gastrointestinal tract in furthering our understanding of gut health and pathogenesis. In order to address this concern, we need to know how the regional delivery of a surrogate labeled test compound is handled and in turn, if delivered locally as a liquid or powder, the dynamics of its subsequent handling and metabolism. In the studies we report on in this paper, we chose 13C sodium acetate (13C-acetate), which is a stable isotope probe that once absorbed in the small intestine can be readily measured non-invasively by collection and analysis of 13CO2 in the breath. This would provide information of gastric emptying rates and an indication of the site of release and absorptive capacity. In a series of in vitro and in vivo pig experiments, we assessed the enteric-protective properties of a commercially available polymer EUDRAGIT® L100-55 on gelatin capsules and also on DRcaps®. Test results demonstrated that DRcaps® coated with EUDRAGIT® L100-55 possessed enhanced enteric-protective properties, particularly in vivo. These studies add to the body of knowledge regarding gastric emptying in pigs and also begin the process of gathering specifications for the design of a simple and cost-effective enteric-coated capsule for delivery of acid-labile macromolecules to the small intestine.
[1]Anderson, D.L., Bartholomeusz, F.D., Kirkwood, I.D., et al., 2002. Liquid gastric emptying in the pig: effect of concentration of inhaled isoflurane. J. Nucl. Med., 43(7):968-971.
[2]Barbosa, L., Vera, H., Moran, S., et al., 2005. Reproducibility and reliability of the 13C-acetate breath test to measure gastric emptying of liquid meal in infants. Nutrition, 21(3):289-294.
[3]Braden, B., Adams, S., Duan, L.P., et al., 1995. The [13C]acetate breath test accurately reflects gastric emptying of liquids in both liquid and semisolid test meals. Gastroenterology, 108(4):1048-1055.
[4]Braden, B., Peterknecht, A., Piepho, T., et al., 2004. Measuring gastric emptying of semisolids in children using the 13C-acetate breath test: a validation study. Dig. Liver. Dis., 36(4):260-264.
[5]Bueno da Costa, M.H., Quintilio, W., Tanizaki, M.M., et al., 2002. Heat shock protein micro-encapsulation as a double tool for the improvement of new generation vaccines. J. Liposome Res., 12(1-2):29-35.
[6]Butler, R.N., 2008. Non-invasive tests in animal models and humans: a new paradigm for assessing efficacy of biologics including prebiotics and probiotics. Curr. Pharm. Des., 14(14):1341-1350.
[7]Calija, B., Cekic, N., Savic, S., et al., 2013. pH-sensitive microparticles for oral drug delivery based on alginate/ oligochitosan/Eudragit® L100-55 “sandwich” polyelectrolyte complex. Colloids Surf. B Biointerfaces, 110:395-402.
[8]de Lacy Costello, B.P., Ledochowski, M., Ratcliffe, N.M., 2013. The importance of methane breath testing: a review. J. Breath Res., 7(2):024001.
[9]Evans, D.F., Pye, G., Bramley, R., et al., 1988. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut, 29:1035-1041.
[10]Festi, D., Capodicasa, S., Sandri, L., et al., 2005. Measurement of hepatic functional mass by means of 13C-methacetin and 13C-phenylalanine breath tests in chronic liver disease: comparison with Child-Pugh score and serum bile acid levels. World J. Gastroenterol., 11(1):142-148.
[11]Holmgren, J., Czerkinsky, C., 2005. Mucosal immunity and vaccines. Nat. Med., 11(Suppl. 4):S45-S53.
[12]Ishii, T., Furube, M., Hirano, S., et al., 2001. Evaluation of 13C-phenylalanine and 13C-tyrosine breath tests for the measurement of hepatocyte functional capacity in patients with liver cirrhosis. Chem. Pharm. Bull. (Tokyo), 49(12):1507-1511.
[13]Jelvehgari, M., Zakeri-Milani, P., Siahi-Shadbad, M.R., et al., 2010. Development of pH-sensitive insulin nanoparticles using Eudragit L100-55 and chitosan with different molecular weights. AAPS PharmSciTech, 11(3):1237-1242.
[14]Khan, M.Z., Prebeg, Z., Kurjakovic, N., 1999. A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers. I. Manipulation of drug release using Eudragit L100-55 and Eudragit S100 combinations. J. Control. Release, 58(2):215-222.
[15]Mccarron, P.A., Donnelly, R.F., Al-Kassas, R., 2008. Comparison of a novel spray congealing procedure with emulsion-based methods for the micro-encapsulation of water-soluble drugs in low melting point triglycerides. J. Microencapsul., 25(6):365-378.
[16]Pelton, N.S., Tivey, D.R., Howarth, G.S., et al., 2004. A novel breath test for the non-invasive assessment of small intestinal mucosal injury following methotrexate administration in the rat. Scand. J. Gastroenterol., 39(10):1015-1016.
[17]Pham, D.M., Aziz, S.M., 2014. A real-time localization system for an endoscopic capsule using magnetic sensors. Sensors, 14(11):20910-20929.
[18]Pizzoferrato, M., del Zompo, F., Mangiola, F., et al., 2013. Specific 13C functional pathways as diagnostic targets in gastroenterology breath-tests: tricks for a correct interpretation. Eur. Rev. Med. Pharmacol. Sci., 17(Suppl. 2):45-50.
[19]Shirley, I.M., Scher, H.B., Perrin, R.M., et al., 2001. Delivery of biological performance via micro-encapsulation formulation chemistry. Pest Manag. Sci., 57(2):129-132.
[20]Sue, M.S., Liu, K.M., Yu, H.S., 1993. The gastro-intestinal absorption of griseofulvin can be enhanced by encapsulation into liposomes. Kaohsiung J. Med. Sci., 9(1):1-8.
[21]Symonds, E.L., Tran, C.D., Butler, R.N., et al., 2008. Gastric emptying is altered with the presence of gastritis. Dig. Dis. Sci., 53(3):636-641.
[22]Takahashi, I., Nochi, T., Yuki, Y., et al., 2009. New horizon of mucosal immunity and vaccines. Curr. Opin. Immunol., 21(3):352-358.
[23]Terao, T., Matsuda, K., Shouji, H., 2001. Improvement in site-specific intestinal absorption of furosemide by Eudragit L100-55. J. Pharm. Pharmacol., 53(4):433-440.
[24]Terry, R., van Wettere, W.H., Whittaker, A.L., et al., 2012. Using the noninvasive 13C-sucrose breath test to measure intestinal sucrase activity in swine. Comp. Med., 62(6):504-507.
[25]Tooley, K.L., Saxon, B.R., Webster, J., et al., 2006. A novel non-invasive biomarker for assessment of small intestinal mucositis in children with cancer undergoing chemotherapy. Cancer Biol. Ther., 5(10):1275-1281.
[26]van Ginkel, F.W., Nguyen, H.H., Mcghee, J.R., 2000. Vaccines for mucosal immunity to combat emerging infectious diseases. Emerg. Infect. Dis., 6(2):123-132.
Open peer comments: Debate/Discuss/Question/Opinion
<1>