Full Text:   <2517>

Summary:  <1796>

CLC number: X172

On-line Access: 2015-10-03

Received: 2015-01-26

Revision Accepted: 2015-07-06

Crosschecked: 2015-09-17

Cited: 1

Clicked: 3905

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Bei-wen Zheng

http://orcid.org/0000-0002-7690-372X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.10 P.865-874

http://doi.org/10.1631/jzus.B1500029


Isolation and characterization of a crude oil degrading bacteria from formation water: comparative genomic analysis of environmental Ochrobactrum intermedium isolate versus clinical strains


Author(s):  Lu-jun Chai, Xia-wei Jiang, Fan Zhang, Bei-wen Zheng, Fu-chang Shu, Zheng-liang Wang, Qing-feng Cui, Han-ping Dong, Zhong-zhi Zhang, Du-jie Hou, Yue-hui She

Affiliation(s):  1Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, School of Energy Resources, China University of Geosciences, Beijing 100083, China; more

Corresponding email(s):   zhengbw@zju.edu.cn, sheyuehui@163.com

Key Words:  Comparative genome, Ochrobactrum intermedium, Oil degradation, Pathogen


Lu-jun Chai, Xia-wei Jiang, Fan Zhang, Bei-wen Zheng, Fu-chang Shu, Zheng-liang Wang, Qing-feng Cui, Han-ping Dong, Zhong-zhi Zhang, Du-jie Hou, Yue-hui She. Isolation and characterization of a crude oil degrading bacteria from formation water: comparative genomic analysis of environmental Ochrobactrum intermedium isolate versus clinical strains[J]. Journal of Zhejiang University Science B, 2015, 16(10): 865-874.

@article{title="Isolation and characterization of a crude oil degrading bacteria from formation water: comparative genomic analysis of environmental Ochrobactrum intermedium isolate versus clinical strains",
author="Lu-jun Chai, Xia-wei Jiang, Fan Zhang, Bei-wen Zheng, Fu-chang Shu, Zheng-liang Wang, Qing-feng Cui, Han-ping Dong, Zhong-zhi Zhang, Du-jie Hou, Yue-hui She",
journal="Journal of Zhejiang University Science B",
volume="16",
number="10",
pages="865-874",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500029"
}

%0 Journal Article
%T Isolation and characterization of a crude oil degrading bacteria from formation water: comparative genomic analysis of environmental Ochrobactrum intermedium isolate versus clinical strains
%A Lu-jun Chai
%A Xia-wei Jiang
%A Fan Zhang
%A Bei-wen Zheng
%A Fu-chang Shu
%A Zheng-liang Wang
%A Qing-feng Cui
%A Han-ping Dong
%A Zhong-zhi Zhang
%A Du-jie Hou
%A Yue-hui She
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 10
%P 865-874
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500029

TY - JOUR
T1 - Isolation and characterization of a crude oil degrading bacteria from formation water: comparative genomic analysis of environmental Ochrobactrum intermedium isolate versus clinical strains
A1 - Lu-jun Chai
A1 - Xia-wei Jiang
A1 - Fan Zhang
A1 - Bei-wen Zheng
A1 - Fu-chang Shu
A1 - Zheng-liang Wang
A1 - Qing-feng Cui
A1 - Han-ping Dong
A1 - Zhong-zhi Zhang
A1 - Du-jie Hou
A1 - Yue-hui She
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 10
SP - 865
EP - 874
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500029


Abstract: 
In this study, we isolated an environmental clone of Ochrobactrum intermedium, strain 2745-2, from the formation water of Changqing oilfield in Shanxi, China, which can degrade crude oil. Strain 2745-2 is aerobic and rod-shaped with optimum growth at 42 °C and pH 5.5. We sequenced the genome and found a single chromosome of 4 800 175 bp, with a G+C content of 57.63%. Sixty RNAs and 4737 protein-coding genes were identified: many of the genes are responsible for the degradation, emulsification, and metabolizing of crude oil. A comparative genomic analysis with related clinical strains (M86, 229E, and LMG3301T) showed that genes involved in virulence, disease, defense, phages, prophages, transposable elements, plasmids, and antibiotic resistance are also present in strain 2745-2.

一株分离自地层水的石油降解菌的特性研究:Ochrobactrum intermedium环境分离菌株与临床分离菌株的比较基因组分析

目的:对一株地层水分离的石油降解菌Ochrobactrum intermedium 2745-2进行生理生化特性的研究、全基因组测序以及比较基因组研究。
创新点:首次对一株分离自地层水的石油降解菌O. intermedium 2745-2进行了生理生化特性研究以及基因组测序,从基因组角度解释菌株2745-2对石油的降解能力。通过菌株2745-2与同种其他临床分离菌株的比较基因组学分析,表明2745-2仍具有多种与致病性相关的基因。
方法:通过微生物富集培养的方法从油井的地层水中分离石油降解微生物,通过聚合酶链反应(PCR)扩增16S核糖体RNA(rRNA)序列进行比较和分析确定菌株的分类地位属于O. intermedium(图1)。采用Illumina HiSeq2000对菌株2745-2进行高通量测序,采用Velvet 1.2.07和RAST server分别进行数据组装和注释(表1)。PHAST寻找基因组中的噬菌体相关序列(图4和表2)。通过BLAST+和BRIG对环境分离菌株(2745-2)和临床分离菌株(M86、229E和LMG3301T)进行基因组比较(表3、表4和图5)。
结论:首次对一株环境分离的O. intermedium(2745-2)进行全基因组测序,揭示具有多种与石油降解相关的基因。通过环境分离菌株(2745-2)与临床分离菌株(M86, 229E和LMG3301T)的基因组比较分析,表明2745-2仍具有多种致病性相关的基因。

关键词:Ochrobactrum intermedium;石油降解;比较基因组;病原菌

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alikhan, N.F., Petty, N.K., Zakour, N.L.B., et al., 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics, 12(1):402.

[2]Apisarnthanarak, A., Kiratisin, P., Mundy, L.M., 2005. Evaluation of Ochrobactrum intermedium bacteremia in a patient with bladder cancer. Diagn. Micr. Infec. Dis., 53(2):153-155.

[3]Aziz, R.K., Bartels, D., Best, A.A., et al., 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics, 9(1):75.

[4]Burge, S.W., Daub, J., Eberhardt, R., et al., 2012. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res., 41(D1):D226-D232.

[5]Camacho, C., Coulouris, G., Avagyan, V., et al., 2009. BLAST+: architecture and applications. BMC Bioinformatics, 10(1):421.

[6]Casjens, S., 2003. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol., 49(2):277-300.

[7]Cheng, H., Zhang, S., Huo, Y.Y., et al., 2015. Gilvimarinus polysaccharolyticus sp. nov., an agar-digesting bacterium isolated from seaweed, and emended description of the genus Gilvimarinus. Int. J. Syst. Evol. Microbiol., 65(Pt 2):562-569.

[8]Creencia, A.R., Mendoza, B.C., Migo, V.P., et al., 2014. Degradation of residual jatropha oil by a promising lipase-producing bacterial consortium. Philipp. J. Sci., 143(1):73-78.

[9]Darling, A.E., Mau, B., Perna, N.T., 2010. ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE, 5(6):e11147.

[10]Das, D., Baruah, R., Roy, A.S., et al., 2015. Complete genome sequence analysis of Pseudomonas aeruginosa N002 reveals its genetic adaptation for crude oil degradation. Genomics, 105(3):182-190.

[11]Dawar, C., Aggarwal, R.K., 2015. Draft genome sequence of hydrocarbon-degrading Pseudomonas putida strain KG-4, isolated from soil samples collected from Krishna-Godavari Basin in India. Genome Announc., 3(3):e00590-e00615.

[12]Dean, A.S., Crump, L., Greter, H., et al., 2012. Global burden of human brucellosis: a systematic review of disease frequency. PLoS Negl. Trop. Dis., 6(10):e1865.

[13]Edelstein, W., Iben, I., Mueller, O., et al., 1994. Radiofrequency ground heating for soil remediation: science and engineering. Environ. Prog., 13(4):247-252.

[14]Genouw, G., de Naeyer, F., van Meenen, P., et al., 1994. Degradation of oil sludge by landfarming—a case-study at the Ghent harbour. Biodegradation, 5(1):37-46.

[15]Griffiths-Jones, S., Bateman, A., Marshall, M., et al., 2003. Rfam: an RNA family database. Nucleic Acids Res., 31(1):439-441.

[16]Hassanshahian, M., Zeynalipour, M.S., Musa, F.H., 2014. Isolation and characterization of crude oil degrading bacteria from the Persian Gulf (Khorramshahr provenance). Mar. Pollut. Bull., 82(1-2):39-44.

[17]Hazen, T.C., Dubinsky, E.A., DeSantis, T.Z., et al., 2010. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science, 330(6001):204-208.

[18]Holmes, B., Popoff, M., Kiredjian, M., et al., 1988. Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. Int. J. Syst. Bacteriol., 38(4):406-416.

[19]Holt, J.G., Krieg, N.R., Sneath, P.H., et al., 1994. Bergey’s Manual of Determinative Bacteriology, 9th Ed. Williams and Wilkins, Baltimore.

[20]Jesubunmi, C.O., 2014. Isolation of oil-degrading microorganisms in spent engine oil-contaminated soil. J. Biol. Agric. Healthcare, 4(25):191-195.

[21]Kavita, B., Keharia, H., 2012. Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil. 3 Biotech, 2(1):79-87.

[22]Kulkarni, G., Dhotre, D., Dharne, M., et al., 2013. Draft genome of Ochrobactrum intermedium strain M86 isolated from non-ulcer dyspeptic individual from India. Gut Pathog., 5:7.

[23]Kulkarni, G., Shetty, S., Dharne, M., et al., 2014. Genome sequencing analysis reveals virulence-related gene content of Ochrobactrum intermedium strain 229E, a urease-positive strain isolated from the human gastric niche. FEMS Microbiol. Lett., 359(1):12-15.

[24]Kumar, V., Singh, S., Manhas, A., et al., 2014. Bioremediation of petroleum hydrocarbon by using Pseudomonas species isolated from petroleum contaminated soil. Analysis, 30(4):1771-1776.

[25]Lagesen, K., Hallin, P., Rødland, E.A., et al., 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res., 35(9):3100-3108.

[26]Larkin, M.A., Blackshields, G., Brown, N., et al., 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23(21):2947-2948.

[27]Lincoln, S.A., Hamilton, T.L., Juárez, A.G.V., et al., 2015. Draft genome sequence of the piezotolerant and crude oil-degrading bacterium Rhodococcus qingshengii strain TUHH-12. Genome Announc., 3(2):e00268-e00315.

[28]Lowe, T.M., Eddy, S.R., 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res., 25(5):955-964.

[29]Marmur, J., Doty, P., 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol., 5(1):109-118.

[30]Mata, J.A., Martínez-Cánovas, J., Quesada, E., et al., 2002. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst. Appl. Microbiol., 25(3):360-375.

[31]Möller, L.V., Arends, J.P., Harmsen, H.J., et al., 1999. Ochrobactrum intermedium infection after liver transplantation. J. Clin. Microbiol., 37(1):241-244.

[32]Mudshingkar, S., Choure, A., Palewar, M., et al., 2013. Ochrobactrum anthropi: an unusual pathogen: are we missing them? Indian J. Med. Microbiol., 31(3):306-308.

[33]Pham, V.H., Kim, J., Jeong, S.W., 2014. Enhanced isolation and culture of highly efficient psychrophilic oil-degrading bacteria from oil-contaminated soils in South Korea. J. Environ. Biol., 35(6):1145-1149.

[34]She, Y.H., Zhang, F., Xia, J.J., et al., 2011. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding. Appl. Biochem. Biotech., 163(2):223-234.

[35]She, Y.H., Wu, W.Q., Hang, C.C., et al., 2014. Genome sequence of Brevibacillus agri strain 5-2, isolated from the formation water of petroleum reservoir. Mar. Genomics, 18:123-125.

[36]Silva, D.S.P., de Lima Cavalcanti, D., de Melo, E.J.V., et al., 2015. Bio-removal of diesel oil through a microbial consortium isolated from a polluted environment. Int. Biodeter. Biodegr., 97:85-89.

[37]Swain, M.T., Tsai, I.J., Assefa, S.A., et al., 2012. A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs. Nat. Protoc., 7(7):1260-1284.

[38]Tamura, K., Stecher, G., Peterson, D., et al., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 30(12):2725-2729.

[39]Tatusov, R.L., Galperin, M.Y., Natale, D.A., et al., 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res., 28(1):33-36.

[40]Tatusov, R.L., Natale, D.A., Garkavtsev, I.V., et al., 2001. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res., 29(1):22-28.

[41]Teyssier, C., Marchandin, H., Jean-Pierre, H., et al., 2005. Molecular and phenotypic features for identification of the opportunistic pathogens Ochrobactrum spp. J. Med. Microbiol., 54(10):945-953.

[42]Velasco, J., Romero, C., López-Goñi, I., et al., 1998. Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp. Int. J. Syst. Bacteriol., 48(3):759-768.

[43]Waranusantigul, P., Lee, H., Kruatrachue, M., et al., 2011. Isolation and characterization of lead-tolerant Ochrobactrum intermedium and its role in enhancing lead accumulation by Eucalyptus camaldulensis. Chemosphere, 85(4):584-590.

[44]Yuan, Y., Lu, Z., Huang, L., et al., 2007. Biodegradation of nicotine from tobacco waste extract by Ochrobactrum intermedium DN2. J. Ind. Microbiol. Biotechnol., 34(8):567-570.

[45]Zerbino, D.R., Birney, E., 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res., 18(5):821-829.

[46]Zhang, F., She, Y., Chai, L., et al., 2012. Microbial diversity in long-term water-flooded oil reservoirs with different in situ temperatures in China. Sci. Rep., 2:760.

[47]Zhang, F., Jiang, X., Chai, L., et al., 2014. Permanent draft genome sequence of Bacillus flexus strain T6186-2, a multidrug-resistant bacterium isolated from a deep-subsurface oil reservoir. Mar. Genomics, 18:135-137.

[48]Zheng, B., Zhang, F., Chai, L., et al., 2014. Permanent draft genome sequence of Geobacillus thermocatenulatus strain GS-1. Mar. Genomics, 18:129-131.

[49]Zhou, Y., Liang, Y., Lynch, K.H., et al., 2011. PHAST: a fast phage search tool. Nucleic Acids Res., 39(Suppl. 2):W347-W352.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE