Full Text:   <2673>

Summary:  <1812>

CLC number: R783.1

On-line Access: 2016-11-03

Received: 2016-04-05

Revision Accepted: 2016-06-23

Crosschecked: 2016-10-18

Cited: 0

Clicked: 4231

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Christian Mehl

http://orcid.org/0000-0001-7541-1021

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2016 Vol.17 No.11 P.864-873

http://doi.org/10.1631/jzus.B1600151


In vitro remineralization of hybrid layers using biomimetic analogs


Author(s):  Hui-ping Lin, Jun Lin, Juan Li, Jing-hong Xu, Christian Mehl

Affiliation(s):  Department of Stomatology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; more

Corresponding email(s):   junlin2@126.com, cmehl@proth.uni-kiel.de

Key Words:  Remineralization, Dentin, Adhesive resin, Biomimetic analog, Altered collagen, Confocal laser scanning microscopy (CLSM), Fluorescence


Hui-ping Lin, Jun Lin, Juan Li, Jing-hong Xu, Christian Mehl. In vitro remineralization of hybrid layers using biomimetic analogs[J]. Journal of Zhejiang University Science B, 2016, 17(11): 864-873.

@article{title="In vitro remineralization of hybrid layers using biomimetic analogs",
author="Hui-ping Lin, Jun Lin, Juan Li, Jing-hong Xu, Christian Mehl",
journal="Journal of Zhejiang University Science B",
volume="17",
number="11",
pages="864-873",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600151"
}

%0 Journal Article
%T In vitro remineralization of hybrid layers using biomimetic analogs
%A Hui-ping Lin
%A Jun Lin
%A Juan Li
%A Jing-hong Xu
%A Christian Mehl
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 11
%P 864-873
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600151

TY - JOUR
T1 - In vitro remineralization of hybrid layers using biomimetic analogs
A1 - Hui-ping Lin
A1 - Jun Lin
A1 - Juan Li
A1 - Jing-hong Xu
A1 - Christian Mehl
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 11
SP - 864
EP - 873
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600151


Abstract: 
Resin-dentin bond degradation is a major cause of restoration failures. The major aim of the current study was to evaluate the impact of a remineralization medium on collagen matrices of hybrid layers of three different adhesive resins using nanotechnology methods. Coronal dentin surfaces were prepared from freshly extracted premolars and bonded to composite resin using three adhesive resins (FluoroBond II, Xeno-III-Bond, and iBond). From each tooth, two central slabs were selected for the study. The slabs used as controls were immersed in a simulated body fluid (SBF). The experimental slabs were immersed in a Portland cement-based remineralization medium that contained two biomimetic analogs (biomineralization medium (BRM)). Eight slabs per group were retrieved after 1, 2, 3, and 4 months, respectively and immersed in Rhodamine B for 24 h. Confocal laser scanning microscopy was used to evaluate the permeability of hybrid layers to Rhodamine B. Data were analyzed by analysis of variance (ANOVA) and Tukey’s honest significant difference (HSD) tests. After four months, all BRM specimens exhibited a significantly smaller fluorescent area than SBF specimens, indicating a remineralization of the hybrid layer (P≤0.05). A clinically applicable biomimetic remineralization delivery system could potentially slow down bond degradation.

牙本质粘结混合层仿生再矿化的体外研究

目的:探讨再矿化介质聚乙烯磷酸和聚丙烯酸对3种粘结剂(FluoroBond II、Xeno-III和iBond)和牙本质所形成的树脂-牙本质界面再矿化程度的影响。
创新点:(1)多数仿生再矿化研究集中于通过透射电子显微镜观察牙本质粘结剂界面的再矿化情况,鲜有采用激光共聚焦显微镜(CLSM)作为观察手段的。虽有研究应用CLSM,但也仅是从定性的角度比较再矿化效应,没有定量分析比较,难以令人信服。而本项研究从定性和定量两方面分析对比。(2)本研究从当前牙本质粘结剂系统(共七代)常用的后四代中选择典型代表产品为研究对象,便于横向比较各类粘结剂。(3)本研究的定量结果除了比较同一时间实验组和对照组的矿化情况,还增加了纵向分析思路,进一步比较矿化程度随时间的变化以及不同牙本质粘结剂粘结界面的矿化情况。
方法:将96颗健康前磨牙按照FluoroBond II、Xeno-III和iBond粘结剂随机分为3组,每颗牙均暴露表层牙本质。3种粘结剂分别严格按照各自产品说明书处理牙本质表面,牙合面堆制5 mm厚的树脂。每颗牙沿牙合-龈向切成0.9 mm厚的薄片,获取中间两片样本用于矿化组和模拟组。矿化组采用含聚乙烯磷酸和聚丙烯酸的再矿化液浸泡;模拟组采用不含聚乙烯磷酸和聚丙烯酸的模拟体液浸泡。各组标本在储存1、2、3和4个月后,各取出8片,经苏丹明B荧光染料染色24 h,冲洗,吹干,置CLSM下观察渗入混合层及粘结层的荧光情况,测量荧光面积、平均荧光量及总荧光量。所有数据统计方法采用方差分析(ANOVA)和Tukey’s HSD检验分析。
结论:本研究中聚丙烯酸和聚乙烯磷酸双仿生类似物分子对FluoroBond II、Xeno-III及iBond粘结剂均显示不同程度的再矿化效应,其中对iBond粘结剂再矿化效应最明显,FluoroBond II粘结剂次之,Xeno-III粘结剂再矿化效应较差,但能够起到抵制基底矿物继续丢失或阻止胶原降解的作用。CLSM结合应用苏丹明B是量化混合层再矿化的一项有效手段。因此,上述双仿生类似物分子应用于口腔粘结剂修复材料促使混合层再矿化,具有良好的应用前景,值得进一步深入研究。

关键词:再矿化;牙本质;粘结树脂;仿生类似物;激光共聚焦显微镜;荧光

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Baht, G.S., Hunter, G.K., Goldberg, H.A., 2008. Bone sialoprotein-collagen interaction promotes hydroxyapatite nucleation. Matrix Biol., 27(7):600-608.

[2]Cai, Y., Tang, R., 2008. Calcium phosphate nanoparticles in biomineralization and biomaterials. J. Mater. Chem., 18:3775-3787.

[3]Carrilho, M.R., Tay, F.R., Pashley, D.H., et al., 2005. Mechanical stability of resin-dentin bond components. Dent. Mater., 21(3):232-241.

[4]Carrilho, M.R., Geraldeli, S., Tay, F., et al., 2007. In vivo preservation of the hybrid layer by chlorhexidine. J. Dent. Res., 86(6):529-533.

[5]Eanes, E., 2001. Amorphous calcium phosphate. In: Chow, L.C., Eanes, E.D. (Eds.), Octacalcium Phosphate. Monographs in Oral Science, Karger, Basel, Vol. 18, p.130-147.

[6]Fontana, M., Li, Y., Dunipace, A.J., et al., 1996. Measurement of enamel demineralization using microradiography and confocal microscopy. A correlation study. Caries Res., 30(5):317-325.

[7]Gajjeraman, S., Narayanan, K., Hao, J., et al., 2007. Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. J. Biol. Chem., 282(2):1193-1204.

[8]Glimcher, M., 2006. Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev. Mineral. Geochem., 64(1):223-282.

[9]Gu, L.S., Huffman, B.P., Arola, D.D., et al., 2010. Changes in stiffness of resin-infiltrated demineralized dentin after remineralization by a bottom-up biomimetic approach. Acta Biomater., 6(4):1453-1461.

[10]Hashimoto, M., 2010. A review—micromorphological evidence of degradation in resin-dentin bonds and potential preventional solutions. J. Biomed. Mater. Res. B Appl. Biomater., 92(1):268-280.

[11]Hashimoto, M., Nakamura, K., Kaga, M., et al., 2008. Crystal growth by fluoridated adhesive resins. Dent. Mater., 24(4):457-463.

[12]He, G., Gajjeraman, S., Schultz, D., et al., 2005. Spatially and temporally controlled biomineralization is facilitated by interaction between self-assembled dentin matrix protein 1 and calcium phosphate nuclei in solution. Biochemistry, 44(49):16140-16148.

[13]Jardine, A.P., da Rosa, R.A., Santini, M.F., et al., 2016. The effect of final irrigation on the penetrability of an epoxy resin-based sealer into dentinal tubules: a confocal microscopy study. Clin. Oral Invest., 20(1):117-123.

[14]Kim, J., Vaughn, R.M., Gu, L., et al., 2010. Imperfect hybrid layers created by an aggressive one-step self-etch adhesive in primary dentin are amendable to biomimetic remineralization in vitro. J. Biomed. Mater. Res. A, 93(4):1225-1234.

[15]Kim, Y.K., Mai, S., Mazzoni, A., et al., 2010a. Biomimetic remineralization as a progressive dehydration mechanism of collagen matrices—implications in the aging of resin-dentin bonds. Acta Biomater., 6(9):3729-3739.

[16]Kim, Y.K., Gu, L.S., Bryan, T.E., et al., 2010b. Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions. Biomaterials, 31(25):6618-6627.

[17]Kinney, J.H., Habelitz, S., Marshall, S.J., et al., 2003. The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J. Dent. Res., 82(12):957-961.

[18]Kokubo, T., Kushitani, H., Sakka, S., et al., 1990. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res. A, 24(6):721-734.

[19]Li, H., Burrow, M.F., Tyas, M.J., 2000. Nanoleakage patterns of four dentin bonding systems. Dent. Mater., 16(1):48-56.

[20]Lin, J., Mehl, C., Yang, B., et al., 2010. Durability of four composite resin cements bonded to dentin under simulated pulpal pressure. Dent. Mater., 26(10):1001-1009.

[21]Lin, J., Zheng, W.Y., Liu, P.R., et al., 2014. Influence of casein phosphopeptide-amorphous calcium phosphate application, smear layer removal, and storage time on resin-dentin bonding. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 15(7):649-660.

[22]Liu, Y., Tjäderhane, L., Breschi, L., et al., 2011. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J. Dent. Res., 90(8):953-968.

[23]Luo, X.J., Yang, H.Y., Niu, L.N., et al., 2016. Translation of a solution-based biomineralization concept into a carrier-based delivery system via the use of expanded-pore mesoporous silica. Acta Biomater., 31(10):378-387.

[24]Mai, S., Kim, Y.K., Toledano, M., et al., 2009. Phosphoric acid esters cannot replace polyvinylphosphonic acid as phosphoprotein analogs in biomimetic remineralization of resin-bonded dentin. Dent. Mater., 25(10):1230-1239.

[25]Meyer, J.L., Weatherall, C.C., 1982. Amorphous to crystalline calcium phosphate phase transformation at elevated pH. J. Colloid Interface Sci., 89(1):257-267.

[26]Olszta, M.J., Odom, D.J., Douglas, E.P., et al., 2003. A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor. Connect. Tissue Res., 44(1):326-334.

[27]Pashley, D.H., Tay, F.R., Yiu, C., et al., 2004. Collagen degradation by host-derived enzymes during aging. J. Dent. Res., 83(3):216-221.

[28]Pashley, D.H., Tay, F.R., Carvalho, R.M., et al., 2007. From dry bonding to water-wet bonding to ethanol-wet bonding. A review of the interactions between dentin matrix and solvated resins using a macromodel of the hybrid layer. Am. J. Dent., 20(1):7-20.

[29]Pfarrer, A., Faller, R., Dusehner, H., 1996. Application of confocal laser scanning microscopy for studying remineralization and demineralization processes. J. Dent. Res., 1(75):543.

[30]Sauro, S., Osorio, R., Watson, T.F., et al., 2015. Influence of phosphoproteins’ biomimetic analogs on remineralization of mineral-depleted resin‒dentin interfaces created with ion-releasing resin-based systems. Dent. Mater., 31(7):759-777.

[31]Sidhu, S.K., Watson, T.F., 1998. Interfacial characteristics of resin-modified glass-ionomer materials: a study on fluid permeability using confocal fluorescence microscopy. J. Dent. Res., 77(9):1749-1759.

[32]Tay, F.R., Pashley, D.H., 2008. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials, 29(8):1127-1137.

[33]Tay, F.R., Pashley, D.H., 2009. Biomimetic remineralization of resin-bonded acid-etched dentin. J. Dent. Res., 88(8):719-724.

[34]Tay, F.R., Pashley, D.H., Rueggeberg, F.A., et al., 2007. Calcium phosphate phase transformation produced by the interaction of the Portland cement component of white mineral trioxide aggregate with a phosphate-containing fluid. J. Endod., 33(11):1347-1351.

[35]Tjaderhane, L., Larjava, H., Sorsa, T., et al., 1998. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J. Dent. Res., 77(8):1622-1629.

[36]Toroian, D., Lim, J.E., Price, P.A., 2007. The size exclusion characteristics of type I collagen: implications for the role of noncollagenous bone constituents in mineralization. J. Biol. Chem., 282(31):22437-22447.

[37]Trebacz, H., Wojtowicz, K., 2005. Thermal stabilization of collagen molecules in bone tissue. Int. J. Biol. Macromol., 37(5):257-262.

[38]van der Veen, M.H., Tsuda, H., Arends, J., et al., 1996. Evaluation of sodium fluorescein for quantitative diagnosis of root caries. J. Dent. Res., 75(1):588-593.

[39]Wang, Y., Spencer, P., 2005. Interfacial chemistry of class II composite restoration: structure analysis. J. Biomed. Mater. Res. A, 75(3):580-587.

[40]Watson, T.F., Cook, R.J., Festy, F., et al., 2008. Optical imaging techniques for dental biomaterials interfaces. In: Curtis, R.V., Watson, T.F. (Eds.), Dental Biomaterials: Imaging, Testing and Modelling. Woodhead Publishing, Cambridge, Chapter 2, p.37-57.

[41]Xu, A.W., Ma, Y., Cölfen, H., 2007. Biomimetic mineralization. J. Mater. Chem., 17(5):415-449.

[42]Yang, B., Ludwig, K., Adelung, R., et al., 2006. Micro-tensile bond strength of three luting resins to human regional dentin. Dent. Mater., 22(1):45-56.

[43]Zhang, S., 2003. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol., 21(10):1171-1178.

[44]Zhong, B., Peng, C., Wang, G., et al., 2015. Contemporary research findings on dentine remineralization. J. Tissue Eng. Regen. Med., 9(9):1004-1016.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE