Full Text:   <1952>

CLC number: R392.11

On-line Access: 

Received: 2005-10-26

Revision Accepted: 2006-04-06

Crosschecked: 0000-00-00

Cited: 3

Clicked: 4748

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2006 Vol.7 No.6 P.436-444

http://doi.org/10.1631/jzus.2006.B0436


Co-expression of sCD40LIg and CTLA4Ig mediated by adenovirus prolonged mouse skin allograft survival


Author(s):  LI Zhao-lun, TIAN Pu-xun, XUE Wu-jun, WU Jun

Affiliation(s):  Department of Renal Transplantation, the First Affiliated Hospital, School of Medicine, Xi’ more

Corresponding email(s):   oliverlee0615@126.com, jacktian@medmail.com.cn

Key Words:  Immune tolerance, CTLA4Ig, sCD40LIg, Replication-defective recombinant adenovirus, Skin graft


LI Zhao-lun, TIAN Pu-xun, XUE Wu-jun, WU Jun. Co-expression of sCD40LIg and CTLA4Ig mediated by adenovirus prolonged mouse skin allograft survival[J]. Journal of Zhejiang University Science B, 2006, 7(6): 436-444.

@article{title="Co-expression of sCD40LIg and CTLA4Ig mediated by adenovirus prolonged mouse skin allograft survival",
author="LI Zhao-lun, TIAN Pu-xun, XUE Wu-jun, WU Jun",
journal="Journal of Zhejiang University Science B",
volume="7",
number="6",
pages="436-444",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.B0436"
}

%0 Journal Article
%T Co-expression of sCD40LIg and CTLA4Ig mediated by adenovirus prolonged mouse skin allograft survival
%A LI Zhao-lun
%A TIAN Pu-xun
%A XUE Wu-jun
%A WU Jun
%J Journal of Zhejiang University SCIENCE B
%V 7
%N 6
%P 436-444
%@ 1673-1581
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.B0436

TY - JOUR
T1 - Co-expression of sCD40LIg and CTLA4Ig mediated by adenovirus prolonged mouse skin allograft survival
A1 - LI Zhao-lun
A1 - TIAN Pu-xun
A1 - XUE Wu-jun
A1 - WU Jun
J0 - Journal of Zhejiang University Science B
VL - 7
IS - 6
SP - 436
EP - 444
%@ 1673-1581
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.B0436


Abstract: 
Objective: To investigate the role of simultaneous blockade of CD40/CD40L and B7/CD28 pathways in the immune tolerance via co-expression of sCD40LIg and CTLA4Ig mediated by replication-defective adenovirus. Methods: Ad-sCD40LIg-IRES2-CTLA4Ig, replication-defective adenovirus co-expressing sCD40LIg and CTLA4Ig, was constructed and identified. The co-expression of sCD40LIg and CTLA4Ig was evaluated with confocal laser scanning microscope and Western blotting. Skin transplantations of C57BL/6 to BALB/c mice were performed. PBS, Ad-Shuttle-CMV and Ad-sCD40LIg-IRES2-CTLA4Ig were administered. skin graft survival was monitored and the mRNA expression of both genes was evaluated in the skin allografts. Results: Ad-sCD40LIg-IRES2-CTLA4Ig was constructed successfully and identified. The co-expression of sCD40LIg and CTLA4Ig was identified with confocal laser scanning microscopy and Western blotting. Compared to the skin graft mean survival time (MST) of non-treated group ((5.75±0.71) d) or Ad-Shuttle-CMV-treated group ((5.50±0.53) d), the skin graft MST was dramatically prolonged in the Ad-sCD40LIg-IRES2-CTLA4Ig-treated group ((16.38±1.19) d, P<0.001). The mRNA expression of both genes was detected. Conclusion: Ad-sCD40LIg-IRES2-CTLA4Ig, a replication-defective adenovirus carrying genes encoding sCD40LIg and CTLA4Ig, was constructed. Simultaneous blockade of CD40/CD40L and B7/CD28 costimulatory pathway mediated by replication-defective adenovirus significantly prolonged skin allograft survival in mice.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Akalin, E., Chandraker, A., Russell, M.E., Turka, L.A., Hancock, W.W., Sayegh, M.H., 1996. CD28-B7 T cell costimulatory blockade by CTLA4Ig in the rat renal allograft model: inhibition of cell-mediated and humoral immune responses in vivo. Transplantation, 62(12):1942-1945.

[2] Andreasen, S.O., Christensen, J.E., Marker, O., Thomsen, A.R., 2000. Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8+ effector T cell responses. J. Immunol., 164(7):3689-3697.

[3] Benda, B., Ljunggren, H.G., Peach, R., Sandberg, J.O., Korsgren, O., 2002. Co-stimulatory molecules in islet xenotransplantation: CTLA4Ig treatment in CD40 ligand-deficient mice. Cell Transplant, 11(7):715-720.

[4] Bolling, S.F., Lin, H., Wei, R.Q., Turka, L.A., 1996. Preventing allograft rejection with CTLA4Ig: effect of donor-specific transfusion route or timing. J. Heart Lung Transplant, 15(9):928-935.

[5] Cerutti, A., Zan, H., Schaffer, A., Bergsagel, L., Harindranath, N., Max, E.E., Casali, P., 1998. CD40 ligand and appropriate cytokines induce switching to IgG, IgA, and IgE and coordinated germinal center and plasmacytoid phenotypic differentiation in a human monoclonal IgM+ IgD+B cell line. J. Immunol., 160(5):2145-2157.

[6] Chen, Z., Ahonen, M., Hämäläinen, H., Bergelson, J.M., Kähäri, V.M., Lahesmaa, R., 2002. High-efficiency gene transfer to primary T lymphocytes by recombinant adenovirus vectors. J. Immunol. Methods, 260(1-2):79-89.

[7] Chirmule, N., Raper, S.E., Burkly, L., Thomas, D., Tazelaar, J., Hughes, J.V., Wilson, J.M., 2000. Readministration of adenovirus vector in nonhuman primate lungs by blockade of CD40-CD40 ligand interactions. J. Virol., 74(7):3345-3352.

[8] Corbascio, M., Ekstrand, H., Osterholm, C., Qi, Z., Simanaitis, M., Larsen, C.P., Pearson, T.C., Riesbeck, K., Ekberg, H., 2002. CTLA4Ig combined with anti-LFA-1 prolongs cardiac allograft survival indefinitely. Transpl. Immunol., 10(1):55-61.

[9] Gao, Y.H., Wang, P., Takagi, K., Shimozato, O., Yagita, H., Okigaki, T., Matasumura, M., 1999. Expression of a soluble form of CTLA4 on macrophage and its biological activity. Cell Research, 9(3):189-199.

[10] Guerette, B., Vilquin, J.T., Gingras, M., Gravel, C., Wood, K.J., Tremblay, J.P., 1996. Prevention of immune reactions triggered by first-generation adenoviral vectors by monoclonal antibodies and CTLA4Ig. Hum. Gene Ther., 7(12):1455-1463.

[11] Guibinga, G.H., Lochmuller, H., Massie, B., Nalbantoglu, J., Karpati, G., Petrof, B.J., 1998. Combinatorial blockade of calcineurin and CD28 signaling facilitates primary and secondary therapeutic gene transfer by adenovirus vectors in dystrophic (mdx) mouse muscles. J. Virol., 72(6):4601-4609.

[12] Guillot, C., Guillonneau, C., Mathieu, P., Gerdes, C.A., Menoret, S., Braudeau, C., Tesson, L., Renaudin, K., Castro, M.G., Lowenstein, P.R., et al., 2002. Prolonged blockade of CD40-CD40 ligand interactions by gene transfer of CD40Ig results in long-term heart allograft survival and donor-specific hyporesponsiveness, but does not prevent chronic rejection. J. Immunol., 168(4):1600-1609.

[13] Guo, L., Fujino, M., Kimura, H., Funeshima, N., Kitazawa, Y., Harihara, Y., Tezuka, K., Makuuchi, M., Suzuki, S., Li, X.K., 2003. Simultaneous blockade of co-stimulatory signals, CD28 and ICOS, induced a stable tolerance in rat heart transplantation. Transpl. Immunol., 12(1):41-48.

[14] Gurtu, V., Yan, G.C., Zhang, G.H., 1996. IRES bicistronic expression vectors for efficient creation of stable mammalian cell lines. Biochem. Biophys. Res. Commun., 229(1):295-298.

[15] Harvey, B.G., Hackett, N.R., El-Sawy, T., Rosengart, T.K., Hirschowitz, E.A., Lieberman, M.D., Lesser, M.L., Crystal, R.G., 1999. Variability of human systemic humoral immune responses to adenovirus gene transfer vectors administered to different organs. J. Virol., 73(8):6729-6742.

[16] Hashimoto, N., Narumi, S., Itabashi, Y., Hakamada, K., Sasaki, M., 2002. Efficacy of donor splenocytes mixed with bone marrow cells for induction of tolerance in sublethally irradiated mice. Transpl. Immunol., 10(1):37-41.

[17] Ideguchi, M., Kajiwara, K., Yoshikawa, K., Uchida, T., Ito, H., 1999. Local adenovirus-mediated CTLA4-immunoglo-bulin expression suppresses the immune responses to adenovirus vectors in the brain. Neuroscience, 95(1):217-226.

[18] Jiang, Z.L., Reay, D., Kreppel, F., Gambotto, A., Feingold, E., Kochanek, S., McCarthy, S.A., Clemens, P.R., 2001. Local high-capacity adenovirus-mediated mCTLA4Ig and mCD40Ig expression prolongs recombinant gene expression in skeletal muscle. Mol. Ther., 3(6):892-900.

[19] Jiang, Z., Feingold, E., Kochanek, S., Clemens, P.R., 2002. Systemic delivery of a high-capacity adenoviral vector expressing mouse CTLA4Ig improves skeletal muscle gene therapy. Mol. Ther., 6(3):369-376.

[20] Jooss, K., Turka, L.A., Wilson, J.M., 1998. Blunting of immune responses to adenoviral vectors in mouse liver and lung with CTLA4Ig. Gene Ther., 5(3):309-319.

[21] Kanaya, K., Tsuchida, Y., Inobe, M., Murakami, M., Hirose, T., Kon, S., Kawaguchi, S., Wada, T., Yamashita, T., Ishii, S., Uede, T., 2003. Combined gene therapy with adenovirus vectors containing CTLA4Ig and CD40Ig prolongs survival of composite tissue allografts in rat model. Transplantation, 75(3):275-281.

[22] Kawai, T., Sogawa, H., Boskovic, S., Abrahamian, G., Smith, R.N., Wee, S.L., Andrews, D., Nadazdin, O., Koyama, I., Sykes, M., et al., 2004. CD154 blockade for induction of mixed chimerism and prolonged renal allograft survival in nonhuman primates. Am. J. Transplant., 4(9):1391-1398.

[23] Kay, M.A., Holterman, A.X., Meuse, L., Gown, A., Ochs, H.D., Linsley, P.S., Wilson, C.B., 1995. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration. Nat. Genet., 11(2):191-197.

[24] Kay, M.A., Meuse, L., Gown, A.M., Linsley, P., Hollenbaugh, D., Aruffo, A., Ochs, H.D., Wilson, C.B., 1997. Transient immunomodulation with anti-CD40 ligand antibody and CTLA4Ig enhances persistence and secondary adenovirus-mediated gene transfer into mouse liver. Proc. Natl. Acad. Sci. USA, 94(9):4686-4691.

[25] Kita, Y., Li, X.K., Ohba, M., Funeshima, N., Enosawa, S., Tamura, A., Suzuki, K., Amemiya, H., Hayashi, S., Kazui, T., et al., 1999. Prolonged cardiac allograft survival in rats systemically injected adenoviral vectors containing CTLA4Ig-gene. Transplantation, 68(6):758-766.

[26] Kita, Y., Nogimura, H., Ida, M., Kageyama, Y., Ohi, S., Ito, Y., Matsushita, K., Takahashi, T., Suzuki, K., Kazui, T., Hayashi, S., Li, X., Suzuki, S., 2002. Combined therapy of CTLA4Ig-gene transfection with FTY720 administration in rat lung allografts. Transplant. Proc., 34(5):1437-1440.

[27] Krummel, M.F., Allison, J.P., 1996. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med., 183(6):2533-2540.

[28] Kuss, A.W., Knodel, M., Berberich-Siebelt, F., Lindemann, D., Schimpl, A., Berberich, I., 1999. A1 expression is stimulated by CD40 in B cells and rescues WEHI 231 cells from anti-IgM-induced cell death. Eur. J. Immunol., 29(10):3077-3088.

[29] Kuzmin, A.I., Galenko, O., Eisensmith, R.C., 2001. An immunomodulatory procedure that stabilizes transgene expression and permits readministration of E1-deleted adenovirus vectors. Mol. Ther., 3(3):293-301.

[30] Laumonier, T., Potiron, N., Boeffard, F., Chagneau, C., Brouard, S., Guillot, C., Soulillou, J.P., Anegon, I., Le Mauff, B., 2003. CTLA4Ig adenoviral gene transfer induces long-term islet rat allograft survival, without tolerance, after systemic but not local intragraft expression. Hum. Gene Ther., 14(6):561-575.

[31] Li, T., Zhang, J., 2004. Stable expression of three genes from a tricistronic retroviral vector containing a picornavirus and 9-nt cellular internal ribosome entry site elements. J. Virol. Methods, 115(2):137-144.

[32] Li, W., Zheng, X.X., Kuhr, C.S., Perkins, J.D., 2005. CTLA4 engagement is required for induction of murine liver transplant spontaneous tolerance. Am. J. Transplant., 5(5):978-986.

[33] Lochmüller, H., Petrof, B.J., Pari, G., Larochelle, N., Dodelet, V., Wang, Q., Allen, C., Prescott, S., Massie, B., Nalbantoglu, J., et al., 1996. Transient immunosuppression by FK506 permits a sustained high-level dystrophin expression after adenovirus-mediated dystrophin minigene transfer to skeletal muscles of adult dystrophic (mdx) mice. Gene Ther., 3(8):706-716.

[34] Mackey, M.F., Barth, R.J.Jr, Noelle, R.J., 1998. The role of CD40/CD154 interactions in the priming, differentiation, and effector function of helper and cytotoxic T cells. J. Leukoc. Biol., 63(4):418-428.

[35] Molla, A., Jang, S.K., Paul, A.V., Reuer, Q., Wimmer, E., 1992. Cardioviral internal ribosomal entry site is functional in a genetically engineered dicistronic poliovirus. Nature, 356(6366):255-257.

[36] Mountford, P.S., Smith, A.G., 1995. Internal ribosome entry sites and dicistronic RNAs in mammalian transgenesis. Trends in Genetics, 11(5):179-184.

[37] Ohba, M., Li, X.K., Kita, Y., Tamura, A., Enosawa, S., Sasakuri, S., Ogoshi, S., Amemiya, H., Suzuki, S., 2000. Perioperative administration of FTY720 and CTLA4IG in rat heart transplantation. Transplant. Proc., 32(7):2024-2025.

[38] Okada, N., Masunaga, Y., Okada, Y., Iiyama, S., Mori, N., Tsuda, T., Matsubara, A., Mizuguchi, H., Hayakawa, T., Fujita, T., et al., 2003. Gene transduction efficiency and maturation status in mouse bone marrow-derived dendritic cells infected with conventional or RGD fiber-mutant adenovirus vectors. Cancer Gene Ther., 10(5):421-431.

[39] Pearson, T.C., Trambley, J., Odom, K., Anderson, D.C., Cowan, S., Bray, R., Lin, A., Hollenbaugh, D., Aruffo, A., Siadak, A.W., et al., 2002. Anti-CD40 therapy extends renal allograft survival in rhesus macaques. Transplantation, 74(7):933-940.

[40] Perico, N., Amuchastegui, S., Bontempelli, M., Remuzzi, G., 1996. CTLA4Ig alone or in combination with low-dose cyclosporine fails to reverse acute rejection of renal allograft in the rat. Transplantation, 61(9):1320-1322.

[41] Reddy, B., Gupta, S., Chuzhin, Y., Kalergis, A.M., Budhai, L., Zhang, M., Droguett, G., Horwitz, M.S., Chowdhury, J.R., Nathenson, S.G., et al., 2001. The effect of CD28/B7 blockade on alloreactive T and B cells after liver cell transplantation. Transplantation, 71(6):801-811.

[42] Rehman, A., Tu, Y., Arima, T., Linsley, P.S., Flye, M.W., 1996. Long-term survival of rat to mouse cardiac xenografts with prolonged blockade of CD28-B7 interaction combined with peritransplant T-cell depletion. Surgery, 120(2):205-212.

[43] Safley, S.A., Kapp, L.M., Tucker-Burden, C., Hering, B., Kapp, J.A., Weber, C.J., 2005. Inhibition of cellular immune responses to encapsulated porcine islet xenografts by simultaneous blockade of two different costimulatory pathways. Transplantation, 79(4):409-418.

[44] Saito, K., Sakurai, J., Ohata, J., Kohsaka, T., Hashimoto, H., Okumura, K., Abe, R., Azuma, M., 1998. Involvement of CD40 ligand-CD40 and CTLA4-B7 pathways in murine acute graft-versus-host disease induced by allogeneic T cells lacking CD28. J. Immunol., 160(9):4225-4231.

[45] Sakata, N., Kawasome, H., Terada, N., Johnson, G.L., Gelfand, E.W., 2000. CD40 and adenosine A2 receptor agonist-cyclic adenosine monophosphate rescue B-cell antigen receptor-induced apoptosis through independent pathways and converge to prevent caspase activation. J. Allergy Clin. Immunol., 105(3):522-531.

[46] Sun, W., Wang, Q., Zhang, L., Liu, Y., Zhang, M., Wang, C., Wang, J., Cao, X., 2003. Blockade of CD40 pathway enhances the induction of immune tolerance by immature dendritic cells genetically modified to express cytotoxic T lymphocyte antigen 4 immunoglobulin. Transplantation, 76(9):1351-1359.

[47] Thiel, M.A., Steiger, J.U., O′Connell, P.J., Lehnert, A.M., Coste, D.J., Williams, K.A., 2005. Local or short-term systemic costimulatory molecule blockade prolongs rat corneal allograft survival. Clin. Experimental Ophthalmol., 33(2):176-180.

[48] Tillman, B.W., de Gruijl, T.D., Luykx-de Bakker, S.A., Scheper, R.J., Pinedo, H.M., Curiel, T.J., Gerritsen, W.R., Curiel, D.T., 1999. Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J. Immunol., 162(11):6378-6383.

[49] Tu, Y., Rehman, A., Flye, M.W., 1996. Prolongation of rat to mouse skin and heart xenograft survival by combined CTLA4Ig and anti-CD4/CD8 antibody. Transplant Proc., 28(4):2061-2062.

[50] Walters, R.W., Grunst, T., Bergelson, J.M., Finberg, R.W., Welsh, M.J., Zabner, J., 1999. Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J. Biol. Chem., 274(15):10219-10226.

[51] Walunas, T.L., Bakker, C.Y., Bluestone, J.A., 1996. CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med., 183(6):2541-2550.

[52] Whitmire, J.K., Murali-Krishna, K., Altman, J., Ahmed, R., 2000. Antiviral CD4 and CD8 T-cell memory: differences in the size of the response and activation requirements. Philos. Trans. R. Soc. Lond. B Biol. Sci., 355(1395):373-379.

[53] Wilson, C.B., Embree, L.J., Schowalter, D., Albert, R., Aruffo, A., Hollenbaugh, D., Linsley, P., Kay, M.A., 1998. Transient inhibition of CD28 and CD40 ligand interactions prolongs adenovirus-mediated transgene expression in the lung and facilitates expression after secondary vector administration. J. Virol., 72(9):7542-7550.

[54] Worgall, S., Wolff, G., Falck-Pedersen, E., Crystal, R.G., 1997. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum. Gene Ther., 8(1):37-44.

[55] Yamashita, K., Masunaga, T., Yanagida, N., Takehara, M., Hashimoto, T., Kobayashi, T., Echizenya, H., Hua, N., Fujita, M., Murakami, M., et al., 2003. Long-term acceptance of rat cardiac allografts on the basis of adenovirus mediated CD40Ig plus CTLA4Ig gene therapies. Transplantation, 76(7):1089-1096.

[56] Yang, Y., Su, Q., Grewal, I.S., Schilz, R., Flavell, R.A., Wilson, J.M., 1996. Transient subversion of CD40 ligand function diminishes immune responses to adenovirus vectors in mouse liver and lung tissues. J. Virol., 70(9):6370-6377.

[57] Yu, X., Zhan, X., D′Costa, J., Tanavde, V.M., Ye, Z., Peng, T., Malehorn, M.T., Yang, X., Civin, C.I., Cheng, L., 2003. Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells. Mol. Ther., 7(6):827-838.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE