Full Text:   <3389>

Summary:  <1695>

CLC number: R445

On-line Access: 2018-01-11

Received: 2017-05-24

Revision Accepted: 2017-08-16

Crosschecked: 2017-12-18

Cited: 0

Clicked: 5230

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2018 Vol.19 No.1 P.6-24

http://doi.org/10.1631/jzus.B1700260


Towards precision medicine: from quantitative imaging to radiomics


Author(s):  U. Rajendra Acharya, Yuki Hagiwara, Vidya K. Sudarshan, Wai Yee Chan, Kwan Hoong Ng

Affiliation(s):  Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore; more

Corresponding email(s):   ngkh@ummc.edu.my

Key Words:  Radiological imaging, Personalised medicine, Precision medicine, Quantitative imaging, Radiogenomics, Radiomics


U. Rajendra Acharya, Yuki Hagiwara, Vidya K. Sudarshan, Wai Yee Chan, Kwan Hoong Ng. Towards precision medicine: from quantitative imaging to radiomics[J]. Journal of Zhejiang University Science B, 2018, 19(1): 6-24.

@article{title="Towards precision medicine: from quantitative imaging to radiomics",
author="U. Rajendra Acharya, Yuki Hagiwara, Vidya K. Sudarshan, Wai Yee Chan, Kwan Hoong Ng",
journal="Journal of Zhejiang University Science B",
volume="19",
number="1",
pages="6-24",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700260"
}

%0 Journal Article
%T Towards precision medicine: from quantitative imaging to radiomics
%A U. Rajendra Acharya
%A Yuki Hagiwara
%A Vidya K. Sudarshan
%A Wai Yee Chan
%A Kwan Hoong Ng
%J Journal of Zhejiang University SCIENCE B
%V 19
%N 1
%P 6-24
%@ 1673-1581
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700260

TY - JOUR
T1 - Towards precision medicine: from quantitative imaging to radiomics
A1 - U. Rajendra Acharya
A1 - Yuki Hagiwara
A1 - Vidya K. Sudarshan
A1 - Wai Yee Chan
A1 - Kwan Hoong Ng
J0 - Journal of Zhejiang University Science B
VL - 19
IS - 1
SP - 6
EP - 24
%@ 1673-1581
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700260


Abstract: 
Radiology (imaging) and imaging-guided interventions, which provide multi-parametric morphologic and functional information, are playing an increasingly significant role in precision medicine. Radiologists are trained to understand the imaging phenotypes, transcribe those observations (phenotypes) to correlate with underlying diseases and to characterize the images. However, in order to understand and characterize the molecular phenotype (to obtain genomic information) of solid heterogeneous tumours, the advanced sequencing of those tissues using biopsy is required. Thus, radiologists image the tissues from various views and angles in order to have the complete image phenotypes, thereby acquiring a huge amount of data. Deriving meaningful details from all these radiological data becomes challenging and raises the big data issues. Therefore, interest in the application of radiomics has been growing in recent years as it has the potential to provide significant interpretive and predictive information for decision support. radiomics is a combination of conventional computer-aided diagnosis, deep learning methods, and human skills, and thus can be used for quantitative characterization of tumour phenotypes. This paper discusses the overview of radiomics workflow, the results of various radiomics-based studies conducted using various radiological images such as computed tomography (CT), magnetic resonance imaging (MRI), and positron-emission tomography (PET), the challenges we are facing, and the potential contribution of radiomics towards precision medicine.

精准医学发展趋势:从定量成像到放射组学

概要:放射学(影像学)及影像引导的介入手段能提供多参数的形态学及功能信息,在精准医学中扮演着越来越重要的角色.因此,放射科医生需要理解影像表型,并将这些表型与潜在的疾病相关联,进而描述图像特征.但是为了能理解并描述异质性实体肿瘤的分子表型(基因组学信息),就需要通过活检取得这些组织更进一步的序列信息.因此,放射科医生为了能获得详尽的影像表型,需要从不同视图和角度采集图像,而这就产生了大量的数据.从所有这些影像数据中提取有意义的细节非常具有挑战性,并衍生出了大数据这个命题.因为影像组学有对诊断支持提供有意义的诠释性和预测性信息的潜力,所以近年来对于影像组学的关注越来越多.影像组学是传统的计算机辅助诊断、深度学习和人类技能的结合,因此它能被用来定量描述肿瘤表型.本文对影像组学流程的概览、基于不同手段(如计算机断层扫描(CT)、磁共振成像(MRI)和正电子发射计算机断层扫描(PET))的影像组学研究结果、面临的挑战和影像组学对于精准医学潜在的贡献等方面进行了讨论.
(感谢浙江大学医学院附属第二医院核医学科陈琳提供中文概要)

关键词:放射影像学;个体化医学;精准医学;定量成像;放射基因组学;放射组学

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Acharya UR, Raghavendra U, Fujita H, et al., 2016a. Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput Biol Med, 79:250-258.

[2]Acharya UR, Fujita H, Sudarshan VK, et al., 2016b. An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images. Inform Fusion, 31:43-53.

[3]Acharya UR, Chowriappa P, Fujita H, et al., 2016c. Thyroid lesion classification in 242 patient population using Gabor transform features from high resolution ultrasound images. Knowl-Based Syst, 107:235-245.

[4]Acharya UR, Ng WL, Rahmat K, et al., 2017. Data mining framework for breast lesion classification in shear wave ultrasound: a hybrid feature paradigm. Biomed Signal Proces, 33:400-410.

[5]Aerts HJWL, 2016. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol, 2: 1636-1642.

[6]Aerts HJWL, Velazquez ER, Leijenaar RTH, et al., 2014. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 5:4006.

[7]Angermueller C, Pärnamaa T, Parts L, et al., 2016. Deep learning for computational biology. Mol Syst Biol, 12: 878.

[8]Antunes J, Viswanath S, Rusu M, et al., 2016. Radiomics analysis on FLT-PET/MRI for characterisation of early treatment response in renal cell carcinoma: a proof of concept study. Transl Oncol, 9(2):155-162.

[9]Bailly C, Bodet-Milin C, Couespel S, et al., 2016. Revisiting the robustness of PET-based textural features in the context of multi-centric trials. PLoS ONE, 11:7.

[10]Balagurunathan Y, Gu YH, Wang H, et al., 2014a. Reproducibility and prognosis of quantitative features extracted from CT images. Transl Oncol, 7(1):72-87.

[11]Balagurunathan Y, Kumar V, Gu YH, et al., 2014b. Test-retest reproducibility analysis of lung CT image features. J Digit Imaging, 27(6):805-823.

[12]Boellaard R, 2009. Standards for PET image acquisition and quantitative data analysis. J Nuclear Med, 50:11S-20S.

[13]Castellino RA, 2005. Computer-aided detection (CAD):an overview. Cancer Imaging, 5:17-19.

[14]Chaddad A, Zinn PO, Colen RR, 2015. Radiomics texture feature extraction for characterising GBM phenotypes using GLCM. IEEE 12th International Symposium on Biomedical Imaging (ISBI). New York, USA.

[15]Chaudhury B, 2015. The Use of Textural Kinetic Habitats to Mine Diagnostic Information from DCE MR Images of Breast Tumours. PhD Theses, University of South Florida, Fowler Avenue, Tampa, USA.

[16]Cheebsumon P, Boelaard R, de Ruysscher D, et al., 2012. Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology. EJNMMI Res, 2(1):56.

[17]Chen R, Snyder M, 2013. Promise of personalized omics to precision medicine. Wiley Interdiscip Rev Syst Biol Med, 5(1):73-82.

[18]Chen YS, Lin ZH, Zhao X, et al., 2014. Deep learning-based classification of hyperspectral data. IEEE J-STARS, 7(6):2094-2107.

[19]Chicklore S, Goh V, Siddique M, et al., 2013. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging, 40(1):133-140.

[20]Cho DS, Clausi DA, Wong A, 2015. Dermal radiomics for melanoma screening. Vision Lett, 1(1):23.

[21]Chung AG, Khalvati F, Shafiee MJ, et al., 2015. Prostate cancer detection via a quantitative radiomics-driven conditional random field framework. IEEE Access, 3: 2531-2541.

[22]Cook GJR, Siddique M, Taylor BP, et al., 2014. Radiomics in PET: principles and applications. Clin Transl Imaging, 2(3):269-276.

[23]Coquery N, Francois O, Lemasson B, et al., 2014. Microvascular MRI and unsupervised clustering yields histology-resembling images in two rat models of glioma. J Cerebr Blood Met, 34(8):1354-1362.

[24]Coroller TP, Grossmann P, Hou Y, et al., 2015. CT-based radiomic signature predicts metastasis in lung adenocarcinoma. J Eur Soc Therapeut Radiol Oncol, 114(3):345-350.

[25]Coroller TP, Agrawal V, Narayan V, et al., 2016. Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol, 119(3):480-486.

[26]Court LE, Fave X, Mackin D, et al., 2016. Computational resources for radiomics. Transl Cancer Res, 5(4):340-348.

[27]Cunliffe A, Armato III SG, Castillo R, et al., 2015. Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int J Radiat Oncol, 91(5):1048-1056.

[28]Davnall F, Yip CSP, Ljungqvist G, et al., 2012. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging, 3(6):573-589.

[29]Depeursinge A, Yanagawa M, Leung AN, et al., 2015. Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT. Med Phys, 42(4):2054-2063.

[30]Desseroit MC, Visvikis D, Tixier F, et al., 2016. Development of a nomogram combining clinical staging with 18F-FDG PET/CT image features in non-small-cell lung cancer stage I‒III. Eur J Nucl Med Mol Imaging, 43(8):1477-1485.

[31]Dinapoli N, Casa C, Barbaro B, et al., 2016. Radiomics for rectal cancer. Transl Cancer Res, 5(4):424-431.

[32]Egger J, Kapur T, Fedorov A, et al., 2013. GBM volumetry using the 3D Slicer medical image computing platform. Sci Rep, 3:1364.

[33]Emaminejad N, Qian W, Guan YB, et al., 2016. Fusion of quantitative image and genomic biomarkers to improve prognosis assessment of early stage lung cancer patients. IEEE Trans Biomed Eng, 63(5):1034-1043.

[34]Eminowicz G, McCormack M, 2015. Variability of clinical target volume delineation for definitive radiotherapy in cervix cancer. Radiother Oncol, 117(3):542-547.

[35]Fave X, Mackin D, Yang JZ, et al., 2015. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys, 42(12):6784-6797.

[36]Fave X, Zhang LF, Yang JZ, et al., 2016. Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Transl Cancer Res, 5(4):349-363.

[37]Felzenszwalb PF, Huttenlocher DP, 2004. Efficient graph-based image segmentation. Int J Comput Vision, 59(2):167-181.

[38]Fried DV, Tucker SL, Zhou SH, et al., 2014. Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys, 90(4):834-842.

[39]Galavis PE, Hollensen C, Jallow N, et al., 2010. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol, 49(7):1012-1016.

[40]Gillies RJ, Kinahan PE, Hricak H, 2016. Radiomics: images are more than pictures, they are data. Radiology, 278(2):563-577.

[41]Grootjans W, Tixier F, van der Vos CS, et al., 2016. The impact of optimal respiratory gating and image noise on evaluation of intratumor heterogeneity on 18F-FDG PET imaging of lung cancer. J Nucl Med, 57(11):1692-1698.

[42]Grossmann P, Gutman DA, Dunn Jr WD, et al., 2016. Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in glioblastoma. BMC Cancer, 16:611.

[43]Guo WT, Li H, Zhu YT, et al., 2015. Prediction of clinical phenotypes in invasive breast carcinomas from the integration of radiomics and genomics data. J Med Imaging, 2(4):041007.

[44]Gutman DA, Cooper LAD, Hwang SN, et al., 2013. MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology, 267(2):560-569.

[45]Haralick RM, Shanmugam K, Dinstein I, 1973. Textural features for image classification. IEEE Trans Syst Man Cybernetics, SMC-3(6):610-621.

[46]Hawkins SH, Korecki JN, Balagurunathan Y, et al., 2014. Predicting outcomes of non-small cell lung cancer using CT image features. IEEE Access, 2:1418-1426.

[47]He L, Huang YQ, Ma ZL, et al., 2016. Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci Rep, 6:34921.

[48]Horgan RP, Kenny LC, 2011. SAC review ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet Gynaecol, 13(3):189-195.

[49]Huang YQ, Liang CH, He L, et al., 2016. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol, 34(18):2157-2164.

[50]Hunter LA, Krafft S, Stingo F, et al., 2013. High-quality machine-robust image features: identification in non-small cell lung cancer computed tomography images. Med Phys, 40(12):121916.

[51]Huynh E, Coroller TP, Narayan V, et al., 2016. CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. Radiother Oncol, 120(2):258-266.

[52]Kass M, Witkin A, Terzopoulos D, 1988. Snakes: active contour models. Int J Comput Vision, 1(4):321-331.

[53]Kato H, Nakajima M, 2012. The efficacy of FDG-PET for the management of esophageal cancer: review article. Ann. Thorac Cardiovasc Surg, 18(5):412-419.

[54]Khalvati F, Wong A, Haider MA, 2015. Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med Imaging, 15:27.

[55]Kumar V, Gu Y, Basu S, et al., 2012. Radiomics: the process and the challenges. Magn Reson Imaging, 30(9):1234-1248.

[56]Kumar YR, Muthukrishnan NM, Mahajan A, et al., 2016. Statistical parameter-based automatic liver tumor segmentation from abdominal CT scans: a potiential radiomic signature. Proced Comput Sci, 93:446-452.

[57]Kuo MD, Jamshidi N, 2014. Behind the numbers: decoding molecular phenotypes with radiogenomics—guiding principles and technical considerations. Radiology, 270(2):320-325.

[58]Lacroix M, Abi-Said D, Fourney DR, et al., 2001. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosur, 95(2):190-198.

[59]Lambin P, Rios-Velazquez E, Leijenaar R, et al., 2012. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 48(4):441-446.

[60]Lee JS, Narang S, Martinez JJ, et al., 2015. Associating spatial diversity features of radiologically defined tumor habitats with epidermal growth factor receptor driver status and 12-month survival in glioblastoma: methods and preliminary investigation. J Med Imaging, 2(4):041006.

[61]Leijenaar RTH, Carvalho S, Velazquez ER, et al., 2013. Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol, 52(7):1391-1397.

[62]Leijenaar RTH, Nalbantov G, Carvalho S, et al., 2015. The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep, 5:11075.

[63]Lian CF, Ruan S, Denoeux T, et al., 2016. Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Med Image Anal, 32:257-268.

[64]Liang CS, Huang YQ, He L, et al., 2016. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I‒II and stage III‒IV colorectal cancer. Oncotarget, 7(21):31401-31412.

[65]Lu W, Chen W, 2016. Positron emission tomography/ computerized tomography for tumor response assessment— a review of clinical practices and radiomics studies. Transl Cancer Res, 5(4):364-370.

[66]Lu W, Wang J, Zhang HH, 2015. Computerized PET/CT image analysis in the evaluation of tumour response to therapy. Brit J Radiol, 88(1048):20140625.

[67]Ma J, Wu F, Jiang T, et al., 2017a. Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images. Med Phys, 44(5):1678-1691.

[68]Ma J, Wu F, Zhu J, et al., 2017b. A pre-trained convolutional neural network based method for thyroid nodule diagnosis. Ultrasonics, 73:221-230.

[69]Mackin D, Fave X, Zhang LF, et al., 2015. Measuring computed tomography scanner variability of radiomics features. Invest Radiol, 50(11):757-765.

[70]Malladi R, Sethian JA, Vemuri BC, 1995. Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Machine Intell, 17(2):158-175.

[71]Mattonen SA, Tetar S, Palma DA, et al., 2015. Imaging texture analysis for automated prediction of lung cancer recurrence after stereotactic radiotherapy. J Med Imaging, 2(4):041010.

[72]Mattonen SA, Palma DA, Johnson C, et al., 2016. Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer: physician performance versus radiomic assessment. Int J Radiat Oncol Biol Phys, 94(5):1121-1128.

[73]Mitra S, Shankar BU, 2015. Medical image analysis for cancer management in natural computing framework. Inform Sci, 306:111-131.

[74]Nair VS, Gevaert O, Davidzon G, et al., 2012. Prognostic PET 18F-FDG uptake imaging features are associated with major oncogenomic alterations in patients with resected non-small cell lung cancer. Cancer Res, 72(15):3725-3734.

[75]Narang S, Lehrer M, Yang D, et al., 2016. Radiomics in glioblastoma: current status, challenges and potential opportunities. Transl Cancer Res, 5(4):383-397.

[76]Nelson B, 2009. Data sharing: empty archives. Nature, 461: 160-163.

[77]Nyflot MJ, Yang F, Byrd D, et al., 2015. Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards. J Med Imaging, 2(4):041002.

[78]Oliver JA, Budzevich M, Zhang GG, et al., 2015. Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer. Transl Oncol, 8(6):524-534.

[79]Parekh V, Jacobs MA, 2016. Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev, 1(2):207-226.

[80]Parmar C, Velazquez ER, Leijenaar R, et al., 2014. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE, 9(7):e102107.

[81]Parmar C, Leijenaar RTH, Grossmann P, et al., 2015a. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep, 5:11044.

[82]Parmar C, Grossmann P, Rietveld D, et al., 2015b. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol, 5:272.

[83]Pizer SM, Amburn EP, Austin JD, et al., 1987. Adaptive histogram equalization and its variations. Comput Vision Graph Image Proc, 39(3):355-368.

[84]Raghavendra U, Acharya UR, Gudigar A, et al., 2017. Fusion of spatial gray level dependency and fractal texture features for the characterization of thyroid lesions. Ultrasonics, 77:110-120.

[85]Rahim MK, Kim SE, So H, et al., 2014. Recent trends in PET image interpretations using volumetric and texture-based quantification methods in nuclear oncology. Nucl Med Mol Imaging, 48(1):1-15.

[86]Sala E, Mema E, Himoto Y, et al., 2017. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol, 72(1):3-10.

[87]Scrivener M, de Jong EEC, van Timmeren JE, et al., 2016. Radiomics applied to lung cancer: a review. Transl Cancer Res, 5(4):398-409.

[88]https://doi.org/10.21037/tcr.2016.06.18

[89]Segal E, Sirlin CB, Ooi C, et al., 2007. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol, 25:675-680.

[90]Song JD, Dong D, Huang YQ, et al., 2016. Association between tumour heterogeneity and overall survival in patients with non-small cell lung cancer. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). Prague, Czech Republic, p.1249-1252.

[91]Sonka, M., Hlavac, V., Boyle, R., 2007. Image processing, analysis, and machine vision. Cengage Learning.

[92]Stoyanova R, Takhar M, Tschudi Y, et al., 2016. Prostate cancer radiomics and the promise of radiogenomics. Transl Cancer Res, 5(4):432-447.

[93]https://doi.org/10.21037/tcr.2016.06.20

[94]Szigeti K, Szabó T, Korom C, et al., 2016. Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data. BMC Med Imaging, 16:14.

[95]Thie JA, 2004. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med, 45(9):1431-1434.

[96]Tixier F, Hatt M, Cheze Le Rest C, et al., 2012. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med, 53(5):693-700.

[97]Tixier F, Hatt M, Valla C, et al., 2015. Visual versus quantitative assessment of intratumor 18F-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer. J Nucl Med, 55(8):1235-1241.

[98]Upadhaya T, Morvan Y, Stindel E, et al., 2015a. A framework for multimodal imaging-based prognostic model building: preliminary study on multimodal MRI in glioblastoma multiforme. IRBM, 36(6):345-350.

[99]Upadhaya T, Morvan Y, Stindel E, et al., 2015b. Prognostic value of multimodal MRI tumor features in glioblastoma multiforme using textural features analysis. 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), New York, NY, USA. IEEE.

[100]Vallières X, Freeman CR, Skamene SR, et al., 2015. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol, 60: 5471-5496.

[101]van den Burg EL, van Hoof M, Postma AA, et al., 2016. An exploratory study to detect Ménière’s disease in conventional MRI scans using radiomics. Front Neurol, 7:190.

[102]van Rossum PSN, Xu C, Fried DV, et al., 2016. The emerging field of radiomics in esophageal cancer: current evidence and future potential. Transl Cancer Res, 5(4):410-423.

[103]van Velden FHP, Kramer GM, Frings V, et al., 2016. Repeatability of radiomic features in non-small-cell lung cancer [18F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol, 18(5):788-795.

[104]Velazquez ER, Parmar C, Jermoumi M, et al., 2013. Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Sci Rep, 3:3529.

[105]Velazquez ER, Meier R, Dunn Jr WD, et al., 2015. Fully automatic GBM segmentation in the TCGA-GBM dataset: prognosis and correlation with VASARI features. Sci Rep, 5:16822.

[106]Wang H, Schabath MB, Liu Y, et al., 2015. Semiquantitative computed tomography characteristics for lung adenocarcinoma and their association with lung cancer survival. Clin Lung Cancer, 16(6):e141-e163.

[107]Wang H, Xu ZS, Fujita H, et al., 2016. Towards felicitous decision making: an overview on challenges and trends of Big Data. Inform Sci, 367-368:747-765.

[108]Wang X, Wong BS, Guan TC, 2005. Image enhancement for radiography inspection. Proceedings Volume 5852, Third International Conference on Experimental Mechanics and Third Conference of the Asian Committee on Experimental Mechanics, Singapore.

[109]Wanichthanarak K, Fahrmann JF, Grapov D, 2015. Genomic, proteomic, and metabolomic data integration strategies. Biomark Insights, 10(Suppl 4):1-6.

[110]WHO (World Health Organization), 2017. Diagnostic imaging. https://www.who.int/diagnostic_imaging/en [accessed on May 13, 2017].

[111]Wong AJ, Kanwar A, Mohamed AS, et al., 2016. Radiomics in head and neck cancer: from exploration to application. Transl Cancer Res, 5(4):371-382.

[112]Wu WM, Parmar C, Grossmann P, et al., 2016. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol, 6:71.

[113]Yamamoto S, Korn RL, Oklu R, et al., 2014. ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization. Radiology, 272(2):568-576.

[114]Yamamoto S, Han W, Kim Y, et al., 2015. Breast cancer: radiogenomic biomarker reveals associations among dynamic contrast-enhanced MR imaging, long noncoding RNA, and metastasis. Radiology, 275(2):384-392.

[115]Yan J, Chu-Shern JL, Loi HY, et al., 2015. Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med, 56(11):1667-1673.

[116]Yang JZ, Zhang LF, Fave XJ, et al., 2016. Uncertainty analysis of quantitative imaging features extracted from contrast-enhanced CT in lung tumors. Comput Med Imaging Graph, 48:1-8.

[117]Yip SSF, Aerts HJWL, 2016. Applications and limitations of radiomics. Phys Med Biol, 61(13):R150-R166.

[118]Yoon HJ, Sohn I, Cho JH, et al., 2015. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach. Medicine, 94(41):e1753.

[119]Ypsilantis PP, Siddique M, Sohn H, et al., 2015. Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS ONE, 10(9):e0137036.

[120]Zhao BS, Tan YQ, Tsai WY, et al., 2016. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep, 6:23428.

[121]Zhou M, Hall LO, Goldgof DB, 2014. Exploring brain tumor heterogeneity for survival time prediction. 2014 22nd International Conference on Pattern Recognition (ICPR), Stockholm, Sweden. IEEE, p.580-585.

[122]Zinn PO, Majadan B, Sathyan P, et al., 2011. Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS ONE, 6(10):e25451.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE