Full Text:   <2159>

Summary:  <1897>

CLC number: TH137; TP13

On-line Access: 2017-12-04

Received: 2016-10-09

Revision Accepted: 2016-11-10

Crosschecked: 2017-10-29

Cited: 0

Clicked: 6734

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiong-bin Peng

http://orcid.org/0000-0002-8120-4990

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.10 P.1624-1634

http://doi.org/10.1631/FITEE.1601104


Quantitative feedback controller design and test for an electro-hydraulic position control system in a large-scale reflecting telescope


Author(s):  Xiong-bin Peng, Guo-fang Gong, Hua-yong Yang, Hai-yang Lou, Wei-qiang Wu, Tong Liu

Affiliation(s):  State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   zju_pxb@163.com

Key Words:  Large-scale reflecting telescope, Quantitative feedback theory, Electro-hydraulic position control system, Micron-level position control capability, System identification, Robust stability


Xiong-bin Peng, Guo-fang Gong, Hua-yong Yang, Hai-yang Lou, Wei-qiang Wu, Tong Liu. Quantitative feedback controller design and test for an electro-hydraulic position control system in a large-scale reflecting telescope[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(10): 1624-1634.

@article{title="Quantitative feedback controller design and test for an electro-hydraulic position control system in a large-scale reflecting telescope",
author="Xiong-bin Peng, Guo-fang Gong, Hua-yong Yang, Hai-yang Lou, Wei-qiang Wu, Tong Liu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="10",
pages="1624-1634",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601104"
}

%0 Journal Article
%T Quantitative feedback controller design and test for an electro-hydraulic position control system in a large-scale reflecting telescope
%A Xiong-bin Peng
%A Guo-fang Gong
%A Hua-yong Yang
%A Hai-yang Lou
%A Wei-qiang Wu
%A Tong Liu
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 10
%P 1624-1634
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601104

TY - JOUR
T1 - Quantitative feedback controller design and test for an electro-hydraulic position control system in a large-scale reflecting telescope
A1 - Xiong-bin Peng
A1 - Guo-fang Gong
A1 - Hua-yong Yang
A1 - Hai-yang Lou
A1 - Wei-qiang Wu
A1 - Tong Liu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 10
SP - 1624
EP - 1634
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601104


Abstract: 
For the primary mirror of a large-scale telescope, an electro-hydraulic position control system (EHPCS) is used in the primary mirror support system. The EHPCS helps the telescope improve imaging quality and requires a micron-level position control capability with a high convergence rate, high tracking accuracy, and stability over a wide mirror cell rotation region. In addition, the EHPCS parameters vary across different working conditions, thus rendering the system nonlinear. In this paper, we propose a robust closed-loop design for the position control system in a primary hydraulic support system. The control system is synthesized based on quantitative feedback theory. The parameter bounds are defined by system modeling and identified using the frequency response method. The proposed controller design achieves robust stability and a reference tracking performance by loop shaping in the frequency domain. Experiment results are included from the test rig for the primary mirror support system, showing the effectiveness of the proposed control design.

大口径望远镜主镜支撑位置控制系统的定量反馈控制器设计与测试

概要:确保主镜支撑位置控制系统的响应速度、定位精度及稳定性是提高大口径望远镜成像质量的关键。镜室的姿态调整及环境温度的变化会改变位置控制系统的工作参数,加剧系统非线性,增加望远镜精确成像的难度。我们提出了基于定量反馈理论的位置控制器设计,辨识系统工作参数,确定工作参数范围,设计补偿控制器及前置滤波器。仿真及实验结果说明,主镜支撑位置控制系统的定量反馈控制器在保证较好的响应速度前提下,具有很好的位置控制精度及稳定性。

关键词:大口径望远镜;定量反馈理论;主镜位置控制系统;微米级位置控制能力;系统辨识;鲁棒稳定性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahn, K.K., Truong, D.Q., Soo, Y.H., 2007. Self tuning fuzzy PID control for hydraulic load simulator. 6th Int. Conf. on Control, Automation, and Systems, p.345-349.

[2]Bender, F.A., Sonntag, M., Sawodny, O., 2015. Nonlinear model predictive control of a hydraulic excavator using Hammerstein models. 6th Int. Conf. on Automation, Robotics and Applications, p.557-562.

[3]Bigongiari, C., Bastieri, D., Galante, N., et al., 2004. The MAGIC telescope reflecting surface. Nucl. Instr. Meth. Phys. Res. A, 518(1-2):193-194.

[4]Chait, Y., Yaniv, O., 1993. Multi-input/single-output computer-aided control design using the quantitative feedback theory. Int. J. Robust Nonl. Contr., 3(1):47-54.

[5]Chatlatanagulchai, W., Kijdech, D., Benjalersyarnon, T., et al., 2016. Quantitative feedback input shaping for flexible-joint robot manipulator. J. Dynam. Syst. Meas. Contr., 138(6):061006.

[6]Elbayomy, K.M., Jiao, Z.X., Zhang, H.Q., 2008. PID controller optimization by GA and its performances on the electro-hydraulic servo control system. Chin. J. Aeronaut., 21(4):378-384.

[7]Jin, H., Lim, J., Kim, Y., et al., 2013. Optical design of a reflecting telescope for CubeSat. J. Opt. Soc. Korea, 17(6):533-537.

[8]Khodabakhshian, A., Hemmati, R., 2012. Robust decentralized multi-machine power system stabilizer design using quantitative feedback theory. Int. J. Electr. Power Energy Syst., 41(1):112-119.

[9]Knohl, E.D., 1994. VLT primary support system. SPIE, 2199:271-283.

[10]Liu, G.P., Daley, S., 1999. Optimal-tuning PID controller design in the frequency domain with application to a rotary hydraulic system. Contr. Eng. Pract., 7(7):821-830.

[11]Moeinkhah, H., Akbarzadeh, A., Rezaeepazhand, J., 2014. Design of a robust quantitative feedback theory position controller for an ionic polymer metal composite actuator using an analytical dynamic model. J. Intell. Mater. Syst. Struct., 25(15):1965-1977.

[12]Park, I., Hong, S., Sunwoo, M., 2014. Robust air-to-fuel ratio and boost pressure controller design for the EGR and VGT systems using quantitative feedback theory. IEEE Trans. Contr. Syst. Technol., 22(6):2218-2231.

[13]Safarzadeh, O., Khaki-Sedigh, A., Shirani, A.S., 2011. Identification and robust water level control of horizontal steam generators using quantitative feedback theory. Energy Conv. Manag., 52(10):3103-3111.

[14]Singh, V.P., Mohanty, S.R., Kishor, N., et al., 2013. Robust H-infinity load frequency control in hybrid distributed generation system. Int. J. Electr. Power Energy Syst., 46:294-305.

[15]Sirouspour, M.R., Salcudean, S.E., 2001. Nonlinear control of hydraulic robots. IEEE Trans. Robot. Autom., 17(2):173-182.

[16]Stepp, L.M., Huang, E., Cho, M.K., 1994. Gemini primary mirror support system. SPIE, 2199:223-238.

[17]Wang, Y.Y., Haskara, I., Yaniv, O., 2011. Quantitative feedback design of air and boost pressure control system for turbocharged diesel engines. Contr. Eng. Pract., 19(6): 626-637.

[18]Yao, J.Y., Jiao, Z.X., Ma, D.W., 2014. Extended-state- observer-based output feedback nonlinear robust control of hydraulic systems with backstepping. IEEE Trans. Ind. Electron., 61(11):6285-6293.

[19]Yao, J.Y., Jiao, Z.X., Ma, D.W., 2015. A practical nonlinear adaptive control of hydraulic servomechanisms with periodic-like disturbances. IEEE/ASME Trans. Mechatron., 20(6):2752-2760.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE