Full Text:   <1120>

Summary:  <489>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2022-12-15

Cited: 0

Clicked: 1326

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yuan-qiang Lu

https://orcid.org/0000-0002-9057-4344

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2022 Vol.23 No.12 P.1028-1041

http://doi.org/10.1631/jzus.B2200285


Development and validation of novel inflammatory response-related gene signature for sepsis prognosis


Author(s):  Shuai JIANG, Wenyuan ZHANG, Yuanqiang LU

Affiliation(s):  Department of Emergency Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; more

Corresponding email(s):   luyuanqiang@zju.edu.cn

Key Words:  Gene signature, Inflammatory response-related gene (IRRG), Prognosis, Immune function, Sepsis


Shuai JIANG, Wenyuan ZHANG, Yuanqiang LU. Development and validation of novel inflammatory response-related gene signature for sepsis prognosis[J]. Journal of Zhejiang University Science B, 2022, 23(12): 1028-1041.

@article{title="Development and validation of novel inflammatory response-related gene signature for sepsis prognosis",
author="Shuai JIANG, Wenyuan ZHANG, Yuanqiang LU",
journal="Journal of Zhejiang University Science B",
volume="23",
number="12",
pages="1028-1041",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2200285"
}

%0 Journal Article
%T Development and validation of novel inflammatory response-related gene signature for sepsis prognosis
%A Shuai JIANG
%A Wenyuan ZHANG
%A Yuanqiang LU
%J Journal of Zhejiang University SCIENCE B
%V 23
%N 12
%P 1028-1041
%@ 1673-1581
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2200285

TY - JOUR
T1 - Development and validation of novel inflammatory response-related gene signature for sepsis prognosis
A1 - Shuai JIANG
A1 - Wenyuan ZHANG
A1 - Yuanqiang LU
J0 - Journal of Zhejiang University Science B
VL - 23
IS - 12
SP - 1028
EP - 1041
%@ 1673-1581
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2200285


Abstract: 
Due to the low specificity and sensitivity of biomarkers in sepsis diagnostics, the prognosis of sepsis patient outcomes still relies on the assessment of clinical symptoms. Inflammatory response is crucial to sepsis onset and progression; however, the significance of inflammatory response-related genes (IRRGs) in sepsis prognosis is uncertain. This study developed an IRRG-based signature for sepsis prognosis and immunological function. The Gene Expression Omnibus (GEO) database was retrieved for two sepsis microarray datasets, GSE64457 and GSE69528, followed by gene set enrichment analysis (GSEA) comparing sepsis and healthy samples. A predictive signature for IRRGs was created using least absolute shrinkage and selection operator (LASSO). To confirm the efficacy and reliability of the new prognostic signature, Cox regression, Kaplan-Meier (K-M) survival, and receiver operating characteristic (ROC) curve analyses were performed. Subsequently, we employed the GSE95233 dataset to independently validate the prognostic signature. A single-sample GSEA (ssGSEA) was conducted to quantify the immune cell enrichment score and immune-related pathway activity. We found that more gene sets were enriched in the inflammatory response in sepsis patient samples than in healthy patient samples, as determined by GSEA. The signature of nine IRRGs permitted the patients to be classified into two risk categories. Patients in the low-risk group showed significantly better 28-d survival than those in the high-risk group. ROC curve analysis corroborated the predictive capacity of the signature, with the area under the curve (AUC) for 28-d survival reaching 0.866. Meanwhile, the ssGSEA showed that the two risk groups had different immune states. The validation set and external dataset showed that the signature was clinically predictive. In conclusion, a signature consisting of nine IRRGs can be utilized to predict prognosis and influence the immunological status of sepsis patients. Thus, intervention based on these IRRGs may become a therapeutic option in the future.

构建和验证与脓毒症预后相关的新的炎症反应相关基因标记

蒋帅1,2,张文远3,陆远强1,2
1浙江大学医学院第一附属医院急诊科,中国杭州市,310003
2浙江省增龄与理化损伤性疾病诊治研究重点实验室,中国杭州市,310003
3浙江大学医学院第一附属医院麻醉科与重症监护室,中国杭州市,310003
目的:探讨免疫反应相关的基因(inflammatory response-related genes,IRRGs)在预测脓毒症患者生存预后中的作用。
创新点:鉴定与脓毒症生存预后密切相关的IRRGs,构建风险评分模型。
方法:对Gene Expression Omnibus(GEO)数据库中478例脓毒症患者的微阵列芯片数据进行综合生物信息学分析,利用least absolute shrinkage and selectionoperator(LASSO)-Cox回归分析筛选与脓毒症28天生存率密切相关的IRRGs,并以此构建脓毒症预后风险评分模型。使用受试者工作特征曲线(ROC)及生存曲线(基于Kaplan-Meier法)评估预后风险评分模型的预测效能及区分度,并用GSE95233数据集进行验证。
结论:利用9个IRRGs构建了与脓毒症28天生存预后有关的风险评估模型,且在GSE95233数据集中进行验证,证实这些IRRGs可作为脓毒症患者的预后生物标志物。

关键词:基因特征;炎症反应相关基因(IRRG);预后;免疫功能;脓毒症

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Andaluz-OjedaD, BobilloF, IglesiasV, et al., 2012. A combined score of pro- and anti-inflammatory interleukins improves mortality prediction in severe sepsis. Cytokine, 57(3):332-336.

[2]BarrettT, WilhiteSE, LedouxP, et al., 2013. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res, 41(D1):D991-D995.

[3]BauerJW, BilgicH, BaechlerEC, 2009. Gene-expression profiling in rheumatic disease: tools and therapeutic potential. Nat Rev Rheumatol, 5(5):257-265.

[4]BosmannM, WardPA, 2013. The inflammatory response in sepsis. Trends Immunol, 34(3):129-136.

[5]BourasM, AsehnouneK, RoquillyA, 2018. Contribution of dendritic cell responses to sepsis-induced immunosuppression and to susceptibility to secondary pneumonia. Front Immunol, 9:2590.

[6]CuocoloR, CarusoM, PerilloT, et al., 2020. Machine learning in oncology: a clinical appraisal. Cancer Lett, 481:55-62.

[7]Darash-YahanaM, GillespieJW, HewittSM, et al., 2009. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers. PLoS ONE, 4(8):e6695.

[8]DelanoMJ, WardPA, 2016. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev, 274(1):330-353.

[9]DemaretJ, VenetF, FriggeriA, et al., 2015. Marked alterations of neutrophil functions during sepsis-induced immunosuppression. J Leukoc Biol, 98(6):1081-1090.

[10]DengZL, ZhouDZ, CaoSJ, et al., 2022. Development and validation of an inflammatory response-related gene signature for predicting the prognosis of pancreatic adenocarcinoma. Inflammation, 45(4):1732-1751.

[11]EvansL, RhodesA, AlhazzaniW, et al., 2021. Executive summary: Surviving Sepsis Campaign: International Guidelines for the Management of Sepsis and Septic Shock 2021. Crit Care Med, 49(11):1974-1982.

[12]FengAL, MaWL, FarajR, et al., 2021. Identification of S1PR3 gene signature involved in survival of sepsis patients. BMC Med Genomics, 14:43.

[13]FleischmannC, ScheragA, AdhikariNKJ, et al., 2016. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med, 193(3):259-272.

[14]Fleischmann-StruzekC, MellhammarL, RoseN, et al., 2020. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis. Intensive Care Med, 46(8):1552-1562.

[15]GottsJE, MatthayMA, 2016. Sepsis: pathophysiology and clinical management. BMJ, 353:i1585.

[16]HannaMOF, AbdelhameedAM, Abou-ElallaAA, et al., 2019. Neutrophil and monocyte receptor expression in patients with sepsis: implications for diagnosis and prognosis of sepsis. Pathog Dis, 77(6):ftz055.

[17]HänzelmannS, CasteloR, GuinneyJ, 2013. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 14:7.

[18]HeWX, XiaoK, FangM, et al., 2021. Immune cell number, phenotype, and function in the elderly with sepsis. Aging Dis, 12(1):277-296.

[19]HelmkeA, NordlohneJ, BalzerMS, et al., 2019. CX3CL1‍‒CX3CR1 interaction mediates macrophage-mesothelial cross talk and promotes peritoneal fibrosis. Kidney Int, 95(6):1405-1417.

[20]HotchkissRS, MonneretG, PayenD, 2013. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol, 13(12):862-874.

[21]ItagakiK, KaczmarekE, KwonWY, et al., 2020. Formyl peptide receptor-1 blockade prevents receptor regulation by mitochondrial danger-associated molecular patterns and preserves neutrophil function after trauma. Crit Care Med, 48(2):e123-e132.

[22]JensenIJ, WinbornCS, FosdickMG, et al., 2018. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog, 14(10):e1007405.

[23]JuAJ, TangJZ, ChenSH, et al., 2021. Pyroptosis-related gene signatures can robustly diagnose skin cutaneous melanoma and predict the prognosis. Front Oncol, 11:709077.

[24]KolaczkowskaE, KubesP, 2013. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol, 13(3):159-175.

[25]KorbeckiJ, SimińskaD, KojderK, et al., 2020. Fractalkine/CX3CL1 in neoplastic processes. Int J Mol Sci, 21(10):3723.

[26]KriplaniA, PanditS, ChawlaA, et al., 2022. Neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and lymphocyte-monocyte ratio (LMR) in predicting systemic inflammatory response syndrome (SIRS) and sepsis after percutaneous nephrolithotomy (PNL). Urolithiasis, 50(3):341-348.

[27]LevyMM, EvansLE, RhodesA, 2018. The surviving sepsis campaign bundle: 2018 update. Crit Care Med, 46(6):997-1000.

[28]LiberzonA, BirgerC, ThorvaldsdóttirH, et al., 2015. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst, 1(6):417-425.

[29]LuJQ, LiuJY, LiA, 2022. Roles of neutrophil reactive oxygen species (ROS) generation in organ function impairment in sepsis. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(6):437-450.

[30]MarkwartR, SaitoH, HarderT, et al., 2020. Epidemiology and burden of sepsis acquired in hospitals and intensive care units: a systematic review and meta-analysis. Intensive Care Med, 46(8):1536-1551.

[31]MiyataK, YotsumotoF, NamSO, et al., 2012. Regulatory mechanisms of the HB-EGF autocrine loop in inflammation, homeostasis, development and cancer. Anticancer Res, 32(6):2347-2352.

[32]NiCM, LingBY, XuX, et al., 2020. CX3CR1 contributes to streptozotocin-induced mechanical allodynia in the mouse spinal cord. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(2):166-171.

[33]PanklaR, BuddhisaS, BerryM, et al., 2009. Genomic transcriptional profiling identifies a candidate blood biomarker signature for the diagnosis of septicemic melioidosis. Genome Biol, 10(11):R127.

[34]PattenM, BünemannJ, ThomaB, et al., 2002. Endotoxin induces desensitization of cardiac endothelin-1 receptor signaling by increased expression of RGS4 and RGS16. Cardiovasc Res, 53(1):156-164.

[35]RaspéC, HöcherlK, RathS, et al., 2013. NF-κB-mediated inverse regulation of fractalkine and CX3CR1 during CLP-induced sepsis. Cytokine, 61(1):97-103.

[36]ReinhartK, BauerM, RiedemannNC, et al., 2012. New approaches to sepsis: molecular diagnostics and biomarkers. Clin Microbiol Rev, 25(4):609-634.

[37]RheeC, DantesR, EpsteinL, et al., 2017. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014. JAMA, 318(13):1241-1249.

[38]RhodesA, EvansLE, AlhazzaniW, et al., 2017. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med, 43(3):304-377.

[39]RichJT, NeelyJG, PanielloRC, et al., 2010. A practical guide to understanding Kaplan-Meier curves. Otolaryngol Head Neck Surg, 143(3):331-336.

[40]RobinX, TurckN, HainardA, et al., 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12:77.

[41]RuanL, ChenGY, LiuZ, et al., 2018. The combination of procalcitonin and C-reactive protein or presepsin alone improves the accuracy of diagnosis of neonatal sepsis: a meta-analysis and systematic review. Crit Care, 22:316.

[42]SchlattererK, BeckC, SchoppmeierU, et al., 2021a. Acetate sensing by GPR43 alarms neutrophils and protects from severe sepsis. Commun Biol, 4:928.

[43]SchlattererK, PeschelA, KretschmerD, 2021b. Short-chain fatty acid and FFAR2 activation—a new option for treating infections? Front Cell Infect Microbiol, 11:785833.

[44]SciclunaBP, KlouwenbergPMCK, van VughtLA, et al., 2015. A molecular biomarker to diagnose community-acquired pneumonia on intensive care unit admission. Am J Respir Crit Care Med, 192(7):826-835.

[45]SilwalP, KimJK, KimYJ, et al., 2020. Mitochondrial reactive oxygen species: double-edged weapon in host defense and pathological inflammation during infection. Front Immunol, 11:1649.

[46]SingerM, DeutschmanCS, SeymourCW, et al., 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 315(8):801-810.

[47]SubramanianA, TamayoP, MoothaVK, et al., 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 102(43):15545-15550.

[48]van der PollT, van de VeerdonkFL, SciclunaBP, et al., 2017. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol, 17(7):407-420.

[49]VenetF, MonneretG, 2018. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol, 14(2):121-137.

[50]VenetF, SchillingJ, CazalisMA, et al., 2017. Modulation of LILRB2 protein and mRNA expressions in septic shock patients and after ex vivo lipopolysaccharide stimulation. Hum Immunol, 78(5-6):441-450.

[51]WatanabeN, SuzukiY, InokuchiS, et al., 2016. Sepsis induces incomplete M2 phenotype polarization in peritoneal exudate cells in mice. J Intensive Care, 4:6.

[52]WedepohlS, Beceren-BraunF, RieseS, et al., 2012. L-Selectin‒a dynamic regulator of leukocyte migration. Eur J Cell Biol, 91(4):257-264.

[53]WintersBD, EberleinM, LeungJ, et al., 2010. Long-term mortality and quality of life in sepsis: a systematic review. Crit Care Med, 38(5):1276-1283.

[54]XiaoZJ, LiJY, YuQ, et al., 2021. An inflammatory response related gene signature associated with survival outcome and gemcitabine response in patients with pancreatic ductal adenocarcinoma. Front Pharmacol, 12:778294.

[55]XuF, ZhouFC, 2020. Inhibition of microRNA-92a ameliorates lipopolysaccharide-induced endothelial barrier dysfunction by targeting ITGA5 through the PI3K/Akt signaling pathway in human pulmonary microvascular endothelial cells. Int Immunopharmacol, 78:106060.

[56]ZhongWW, WangDJ, YaoB, et al., 2021. Integrative analysis of prognostic long non-coding RNAs with copy number variation in bladder cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(8):664-681.

[57]ZouWJ, ChenL, MaoWW, et al., 2021. Identification of inflammatory response-related gene signature associated with immune status and prognosis of lung adenocarcinoma. Front Bioeng Biotechnol, 9:772206.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE