Full Text:   <349>

Summary:  <185>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-12-08

Received: 2023-06-06

Revision Accepted: 2023-08-21

Crosschecked: 2023-12-12

Cited: 0

Clicked: 521

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Meilin CUI

https://orcid.org/0000-0003-2800-5770

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2023 Vol.24 No.12 P.1174-1179

http://doi.org/10.1631/jzus.B2300279


Abscisic acid-mediated cytosolic Ca2+ modulates triterpenoid accumulation of Ganoderma lucidum


Author(s):  Meilin CUI, Yitao ZHAO, Xiuhong ZHANG, Wei ZHAO

Affiliation(s):  College of Food Science, Shanxi Normal University, Taiyuan 030031, China

Corresponding email(s):   cuimeilin1988@163.com

Key Words:  Ganoderic triterpenoid, Abscisic acid, Ca2+ signal, Antioxidant capacity


Meilin CUI, Yitao ZHAO, Xiuhong ZHANG, Wei ZHAO. Abscisic acid-mediated cytosolic Ca2+ modulates triterpenoid accumulation of Ganoderma lucidum[J]. Journal of Zhejiang University Science B, 2023, 24(12): 1174-1179.

@article{title="Abscisic acid-mediated cytosolic Ca2+ modulates triterpenoid accumulation of Ganoderma lucidum",
author="Meilin CUI, Yitao ZHAO, Xiuhong ZHANG, Wei ZHAO",
journal="Journal of Zhejiang University Science B",
volume="24",
number="12",
pages="1174-1179",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300279"
}

%0 Journal Article
%T Abscisic acid-mediated cytosolic Ca2+ modulates triterpenoid accumulation of Ganoderma lucidum
%A Meilin CUI
%A Yitao ZHAO
%A Xiuhong ZHANG
%A Wei ZHAO
%J Journal of Zhejiang University SCIENCE B
%V 24
%N 12
%P 1174-1179
%@ 1673-1581
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300279

TY - JOUR
T1 - Abscisic acid-mediated cytosolic Ca2+ modulates triterpenoid accumulation of Ganoderma lucidum
A1 - Meilin CUI
A1 - Yitao ZHAO
A1 - Xiuhong ZHANG
A1 - Wei ZHAO
J0 - Journal of Zhejiang University Science B
VL - 24
IS - 12
SP - 1174
EP - 1179
%@ 1673-1581
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300279


Abstract: 
Ganoderma lucidum is a mushroom widely used for its edible and medicinal properties. Primary bioactive constituents of G. lucidum are ganoderic triterpenoids (GTs), which exhibit important pharmacological activity. abscisic acid (ABA), a plant hormone, is associated with plant growth, development, and stress responses. ABA can also affect the growth, metabolism, and physiological activities of different fungi and participates in the regulation of the tetracyclic triterpenes of some plants. Our findings indicated that ABA treatment promoted GT accumulation by regulating the gene expression levels (squalene synthase (sqs), 3-hydroxy-3-methylglutaryl-CoA reductase (hmgr), and lanosterol synthase (ls)), and also activated cytosolic Ca2+ channels. Furthermore, under ABA mediation, exogenous Ca2+ donors and inhibitors directly affected the cytosolic Ca2+ concentration and related gene expression in Ca2+ signaling. Our study also revealed that ABA-mediated cytosolic Ca2+ played a crucial regulatory role in GT biosynthesis, accompanied by antioxidant defense modulation with increasing superoxide dismutase (SOD) activity and ascorbate peroxidase (APX) activity, and the resistance ability of O2•- and glutathione (GSH) contents.

脱落酸介导胞内Ca2+参与调控灵芝三萜积累

崔美林,赵燚涛,张秀红,赵微
山西师范大学食品科学学院,中国太原市,030031
摘要:灵芝是中医药宝库中的珍品,具有重要的药理学功能。作为灵芝最主要的活性物质之一,灵芝三萜含量是评价灵芝质量的重要指标。本研究旨在探讨脱落酸(ABA)介导胞内钙离子(Ca2+)对灵芝三萜积累的影响。研究发现,ABA(300 µmol/L)可有效促进灵芝三萜积累,其合成途径中关键酶基因(sqshmgrls)表达水平随之发生变化;同时,ABA诱导可激活胞内Ca2+通道并提高Ca2+浓度。在ABA介导下,外源Ca2+供体和抑制剂可直接影响胞内Ca2+浓度及Ca2+信号相关基因的表达。此外,ABA介导的Ca2+在灵芝三萜的生物合成中起着关键的调节作用,并伴随抗氧化防御调节,包括超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性、超氧阴离子自由基(O2·-)清除能力、谷胱甘肽(GSH)含量的提高。

关键词:灵芝三萜;脱落酸;钙离子(Ca2+)信号;抗氧化能力

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]ArnesenJA, JacobsenIH, DyekjærJD, et al., 2022. Production of abscisic acid in the oleaginous yeast Yarrowia lipolytica. FEMS Yeast Res, 22(1):foac015.

[2]CuiML, YangHY, HeGQ, 2017. Apoptosis induction of colorectal cancer cells HTL-9 in vitro by the transformed products of soybean isoflavones by Ganoderma lucidum. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(12):1101-1112.

[3]KongLY, ChenP, ChangC, 2023. Drought resistance and ginsenosides biosynthesis in response to abscisic acid in Panax ginseng C. A. Meyer. Int J Mol Sci, 24(11):9194.

[4]LiKK, PradaJ, DamineliDSC, et al., 2021. An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca2+ and H+ reveals new insights into ion signaling in plants. New Phytol, 230(6):2292-2310.

[5]MacRobbieEAC, 2000. ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+(Rb+) release. Proc Natl Acad Sci USA, 97(22):12361-12368.

[6]MarusigD, TombesiS, 2020. Abscisic acid mediates drought and salt stress responses in Vitis vinifera—a review. Int J Mol Sci, 21(22):8648.

[7]ParveenA, AhmarS, KamranM, et al., 2021. Abscisic acid signaling reduced transpiration flow, regulated Na+ ion homeostasis and antioxidant enzyme activities to induce salinity tolerance in wheat (Triticum aestivum L.) seedlings. Environ Technol Innov, 24:101808.

[8]Peskan-BerghöferT, Vilches-BarroA, MüllerTM, et al., 2015. Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots. New Phytol, 208(3):873-886.

[9]RenA, ShiL, ZhuJ, et al., 2019. Shedding light on the mechanisms underlying the environmental regulation of secondary metabolite ganoderic acid in Ganoderma lucidum using physiological and genetic methods. Fungal Genet Biol, 128:43-48.

[10]SiebeneichlerTJ, CrizelRL, CamozattoGH, et al., 2020. The postharvest ripening of strawberry fruits induced by abscisic acid and sucrose differs from their in vivo ripening. Food Chem, 317:126407.

[11]XuGM, YangSQ, MengLH, et al., 2018. The plant hormone abscisic acid regulates the growth and metabolism of endophytic fungus Aspergillus nidulans. Sci Rep, 8:6504.

[12]XuLL, LaiYL, WangL, et al., 2011. Effects of abscisic acid and nitric oxide on trap formation and trapping of nematodes by the fungus Drechslerella stenobrocha AS6.1. Fungal Biol, 115(2):97-101.

[13]YinJ, SunL, LiY, et al., 2020. Functional identification of BpMYB21 and BpMYB61 transcription factors responding to MeJA and SA in birch triterpenoid synthesis. BMC Plant Biol, 20:374.

[14]ZehraA, ChoudharyS, WaniKI, et al., 2020. Exogenous abscisic acid mediates ROS homeostasis and maintains glandular trichome to enhance artemisinin biosynthesis in Artemisia annua under copper toxicity. Plant Physiol Biochem, 156:125-134.

[15]ZhangDH, LiN, YuXY, et al., 2017. Overexpression of the homologous lanosterol synthase gene in ganoderic acid biosynthesis in Ganoderma lingzhi. Phytochemistry, 134:46-53.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE