Full Text:   <603>

Summary:  <64>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-12-30

Received: 2023-12-11

Revision Accepted: 2024-03-26

Crosschecked: 2024-12-30

Cited: 0

Clicked: 954

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Tiansheng CHEN

https://orcid.org/0000-0003-4763-2307

Yuewen JIANG

https://orcid.org/0009-0003-2156-696X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2024 Vol.25 No.12 P.1083-1096

http://doi.org/10.1631/jzus.B2300899


Efficient genome editing in medaka (Oryzias latipes) using a codon-optimized SaCas9 system


Author(s):  Yuewen JIANG, Qihua PAN, Zhi WANG, Ke LU, Bilin XIA, Tiansheng CHEN

Affiliation(s):  Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan430070, China; more

Corresponding email(s):   tiansheng.chen@jmu.edu.cn

Key Words:  Staphylococcus aureus Cas9 (SaCas9), Medaka, Transfer RNA (tRNA), Gene editing, Tyrosinase (tyr), Oculocutaneous albinism II (oca2), Paired box 6.1 (pax6.1)


Yuewen JIANG, Qihua PAN, Zhi WANG, Ke LU, Bilin XIA, Tiansheng CHEN. Efficient genome editing in medaka (Oryzias latipes) using a codon-optimized SaCas9 system[J]. Journal of Zhejiang University Science B, 2024, 25(12): 1083-1096.

@article{title="Efficient genome editing in medaka (Oryzias latipes) using a codon-optimized SaCas9 system",
author="Yuewen JIANG, Qihua PAN, Zhi WANG, Ke LU, Bilin XIA, Tiansheng CHEN",
journal="Journal of Zhejiang University Science B",
volume="25",
number="12",
pages="1083-1096",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300899"
}

%0 Journal Article
%T Efficient genome editing in medaka (Oryzias latipes) using a codon-optimized SaCas9 system
%A Yuewen JIANG
%A Qihua PAN
%A Zhi WANG
%A Ke LU
%A Bilin XIA
%A Tiansheng CHEN
%J Journal of Zhejiang University SCIENCE B
%V 25
%N 12
%P 1083-1096
%@ 1673-1581
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300899

TY - JOUR
T1 - Efficient genome editing in medaka (Oryzias latipes) using a codon-optimized SaCas9 system
A1 - Yuewen JIANG
A1 - Qihua PAN
A1 - Zhi WANG
A1 - Ke LU
A1 - Bilin XIA
A1 - Tiansheng CHEN
J0 - Journal of Zhejiang University Science B
VL - 25
IS - 12
SP - 1083
EP - 1096
%@ 1673-1581
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300899


Abstract: 
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, belonging to the type II CRISPR/Cas system, is an effective gene-editing tool widely used in different organisms, but the size of Streptococcus pyogenes Cas9 (SpCas9) is quite large (4.3 kb), which is not convenient for vector delivery. In this study, we used a codon-optimized Staphylococcus aureus Cas9 (SaCas9) system to edit the tyrosinase (tyr), oculocutaneous albinism II (oca2), and paired box 6.1 (pax6.1) genes in the fish model medaka (Oryzias latipes), in which the size of SaCas9 (3.3 kb) is much smaller and the necessary protospacer-adjacent motif (PAM) sequence is 5'-NNGRRT-3'. We also used a transfer RNA (tRNA)‍-single-guide RNA (sgRNA) system to express the functional sgRNA by transcription either in vivo or in vitro, and the combination of SaCas9 and tRNA-sgRNA was used to edit the tyr gene in the medaka genome. The SaCas9/sgRNA and SaCas9/tRNA-sgRNA systems were shown to edit the medaka genome effectively, while the PAM sequence is an essential part for the efficiency of editing. Besides, tRNA can improve the flexibility of the system by enabling the sgRNA to be controlled by a common promoter such as cytomegalovirus. Moreover, the all-in-one cassette cytomegalovirus (CMV)‍-SaCas9-tRNA-sgRNA-tRNA is functional in medaka gene editing. Taken together, the codon-optimized SaCas9 system provides an alternative and smaller tool to edit the medaka genome and potentially other fish genomes.

基于密码子优化的SaCas9系统高效编辑青鳉(Oryzias latipes)基因组

蒋月雯1, 潘启华2, 王志1, 陆可1, 夏必琳1, 陈天圣1,2
1华中农业大学水产学院, 农业农村部淡水动物育种重点实验室, 中国武汉市, 430070
2集美大学水产学院,海水养殖育种国家重点实验室, 教育部现代鳗业技术工程研究中心, 农业农村部东海健康海水养殖重点实验室, 中国厦门市, 361021
摘要:CRISPR-Cas9系统属于II型CRISPR/Cas系统,作为一种有效的基因编辑工具被广泛应用于不同生物体中,但化脓性链球菌(Streptococcus pyogenes)Cas9(SpCas9)体积较大(4.3 kb),因此使用载体传递较为不便。本研究利用密码子优化后的金黄色葡萄球菌(Staphylococcus aureus)Cas9(SaCas9)系统进行了青鳉(Oryzias latipes)的tyroca2pax6.1基因编辑。SaCas9片段(3.3 kb)要小,所需的原型间隔相邻基序(PAM)序列为5'-NNGRRT-3'。此外,本研究还利用tRNA-sgRNA系统在体内和体外转录表达功能性sgRNA,经SaCas9和tRNA-sgRNA的组合编辑青鳉基因组中的tyr基因。实验结果表明,SaCas9/sgRNA和SaCas9/tRNA-sgRNA系统均能有效编辑青鳉基因组,而PAM序列是该系统进行有效编辑的关键部分。此外,tRNA还能使sgRNA受巨细胞病毒等常见启动子的控制,从而提高系统的适应性。本研究还发现,CMV-SaCas9-tRNA-sgRNA-tRNA一体化结构在青鳉基因编辑中同样能发挥作用。综上,经密码子优化的SaCas9系统为编辑青鳉及潜在的其他鱼类基因组提供了一种更便捷的工具。

关键词:金黄色葡萄球菌(Staphylococcus aureus)Cas9(SaCas9);青鳉;转运核糖核酸(tRNA);基因编辑;酪氨酸酶(tyr);眼皮肤白化病2型(oca2);配对盒基因6.1(pax6.1

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BalboaD, WeltnerJ, NovikY, et al., 2017. Generation of a SOX2 reporter human induced pluripotent stem cell line using CRISPR/SaCas9. Stem Cell Res, 22:16-19.

[2]BrooksAK, GajT, 2018. Innovations in CRISPR technology. Curr Opin Biotechnol, 52:95-101.

[3]ChenTS, CavariB, SchartlM, et al., 2017. Identification and expression of conserved and novel RNA variants of medaka pax6b gene. J Exp Zool Part B Mol Dev Evol, 328(5):412-422.

[4]DickinsonDJ, WardJD, ReinerDJ, et al., 2013. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods, 10(10):1028-1034.

[5]DongFP, XieKB, ChenYY, et al., 2017. Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells. Biochem Biophys Res Commun, 482(4):889-895.

[6]FangJ, ChenTS, PanQH, et al., 2018. Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9. J Exp Zool Part B Mol Dev Evol, 330(4):242-246.

[7]FengY, ChenC, HanYX, et al., 2016. Expanding CRISPR/Cas9 genome editing capacity in zebrafish using SaCas9. G3 Genes Genom Genet, 6(8):2517-2521.

[8]FriedlandAE, BaralR, SinghalP, et al., 2015. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol, 16:257.

[9]GratzSJ, CummingsAM, NguyenJN, et al., 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 194(4):1029-1035.

[10]HuZY, WangS, ZhangCD, et al., 2020. A compact Cas9 ortholog from Staphylococcus auricularis (SauriCas9) expands the DNA targeting scope. PLoS Biol, 18(3):e3000686.

[11]HwangWY, FuYF, ReyonD, et al., 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 31(3):227-229.

[12]JinekM, ChylinskiK, FonfaraI, et al., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096):816-821.

[13]KatayamaS, SatoK, NakazawaT, 2019. In vivo and in vitro knockout system labelled using fluorescent protein via microhomology-mediated end joining. Life Sci Alliance, 3(1):e201900528.

[14]KleinstiverBP, PrewMS, TsaiSQ, et al., 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 523(7561):481-485.

[15]LiH, ShengCY, LiuHB, et al., 2018. Inhibition of HBV expression in HBV transgenic mice using AAV-delivered CRISPR-SaCas9. Front Immunol, 9:2080.

[16]MaCF, ZhuCZ, ZhengM, et al., 2019. CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Hortic Res, 6:20.

[17]MakarovaKS, HaftDH, BarrangouR, et al., 2011a. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 9(6):467-477.

[18]MakarovaKS, AravindL, WolfYI, et al., 2011b. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct, 6:38.

[19]MakarovaKS, WolfYI, AlkhnbashiOS, et al., 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 13(11):722-736.

[20]MefferdAL, KornepatiAVR, BogerdHP, et al., 2015. Expression of CRISPR/Cas single guide RNAs using small tRNA promoters. RNA, 21(9):1683-1689.

[21]MojicaFJM, Díez-VillaseñorC, García-MartínezJ, et al., 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155(3):733-740.

[22]NakaarV, DareAO, HongD, et al., 1994. Upstream tRNA genes are essential for expression of small nuclear and cytoplasmic RNA genes in trypanosomes. Mol Cell Biol, 14(10):6736-6742.

[23]NumamotoM, MaekawaH, KanekoY, 2017. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha. J Biosci Bioeng, 124(5):487-492.

[24]PanQH, LuoJZ, JiangYW, et al., 2022. Efficient gene editing in a medaka (Oryzias latipes) cell line and embryos by SpCas9/tRNA-gRNA. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(1):74-83.

[25]PanQH, LuK, LuoJZ, et al., 2023a. Japanese medaka Olpax6.1 mutant as a potential model for spondylo-ocular syndrome. Funct Integr Genomics, 23(2):168.

[26]PanQH, LuoJZ, JiangYW, et al., 2023b. Medaka (Oryzias latipes) Olpax6.2 acquires maternal inheritance and germ cells expression, but functionally degenerate in the eye. Gene, 872:147439.

[27]PortF, BullockSL, 2016. Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNA. Nat Methods, 13:852-854.

[28]QiWW, ZhuT, TianZR, et al., 2016. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol, 16:58.

[29]RanFA, CongL, YanWX, et al., 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520(7546):186-191.

[30]ShirakiT, KawakamiK, 2018. A tRNA-based multiplex sgRNA expression system in zebrafish and its application to generation of transgenic albino fish. Sci Rep, 8:13366.

[31]SwiechL, HeidenreichM, BanerjeeA, et al., 2015. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol, 33(1):102-106.

[32]WangLL, YangY, BretonC, et al., 2020. A mutation-independent CRISPR-Cas9-mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency. Sci Adv, 6(7):eaax5701.

[33]WangQK, LiuS, LiuZP, et al., 2018. Genome scale screening identification of SaCas9/gRNAs for targeting HIV-1 provirus and suppression of HIV-1 infection. Virus Res, 250:21-30.

[34]WiedenheftB, SternbergSH, DoudnaJA, 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 482(7385):331-338.

[35]WuH, LiuQS, ShiH, et al., 2018. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Cell Mol Life Sci, 75(19):3593-3607.

[36]XieHH, TangLC, HeXB, et al., 2018. SaCas9 requires 5'-NNGRRT-3' PAM for sufficient cleavage and possesses higher cleavage activity than SpCas9 or FnCpf1 in human cells. Biotechnol J, 13(3):1800080.

[37]XieKB, MinkenbergB, YangYN, 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA, 112(11):3570-3575.

[38]YangZX, FuYW, ZhaoJJ, et al., 2022. Superior fidelity and distinct editing outcomes of SaCas9 compared to SpCas9 in genome editing. Genom Proteom Bioinf, 21(6):1206-1220.

[39]ZhangXY, LiangPP, DingCH, et al., 2016. Efficient production of gene-modified mice using Staphylococcus aureus Cas9. Sci Rep, 6:32565.

[40]ZhangYP, WangJ, WangZB, et al., 2019. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat Commun, 10:1053.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE