CLC number:
On-line Access: 2024-12-30
Received: 2023-12-11
Revision Accepted: 2024-03-26
Crosschecked: 2024-12-30
Cited: 0
Clicked: 954
Citations: Bibtex RefMan EndNote GB/T7714
Yuewen JIANG, Qihua PAN, Zhi WANG, Ke LU, Bilin XIA, Tiansheng CHEN. Efficient genome editing in medaka (Oryzias latipes) using a codon-optimized SaCas9 system[J]. Journal of Zhejiang University Science B, 2024, 25(12): 1083-1096.
@article{title="Efficient genome editing in medaka (Oryzias latipes) using a codon-optimized SaCas9 system",
author="Yuewen JIANG, Qihua PAN, Zhi WANG, Ke LU, Bilin XIA, Tiansheng CHEN",
journal="Journal of Zhejiang University Science B",
volume="25",
number="12",
pages="1083-1096",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300899"
}
%0 Journal Article
%T Efficient genome editing in medaka (Oryzias latipes) using a codon-optimized SaCas9 system
%A Yuewen JIANG
%A Qihua PAN
%A Zhi WANG
%A Ke LU
%A Bilin XIA
%A Tiansheng CHEN
%J Journal of Zhejiang University SCIENCE B
%V 25
%N 12
%P 1083-1096
%@ 1673-1581
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300899
TY - JOUR
T1 - Efficient genome editing in medaka (Oryzias latipes) using a codon-optimized SaCas9 system
A1 - Yuewen JIANG
A1 - Qihua PAN
A1 - Zhi WANG
A1 - Ke LU
A1 - Bilin XIA
A1 - Tiansheng CHEN
J0 - Journal of Zhejiang University Science B
VL - 25
IS - 12
SP - 1083
EP - 1096
%@ 1673-1581
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300899
Abstract: The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, belonging to the type II CRISPR/Cas system, is an effective gene-editing tool widely used in different organisms, but the size of Streptococcus pyogenes Cas9 (SpCas9) is quite large (4.3 kb), which is not convenient for vector delivery. In this study, we used a codon-optimized Staphylococcus aureus Cas9 (SaCas9) system to edit the tyrosinase (tyr), oculocutaneous albinism II (oca2), and paired box 6.1 (pax6.1) genes in the fish model medaka (Oryzias latipes), in which the size of SaCas9 (3.3 kb) is much smaller and the necessary protospacer-adjacent motif (PAM) sequence is 5'-NNGRRT-3'. We also used a transfer RNA (tRNA)-single-guide RNA (sgRNA) system to express the functional sgRNA by transcription either in vivo or in vitro, and the combination of SaCas9 and tRNA-sgRNA was used to edit the tyr gene in the medaka genome. The SaCas9/sgRNA and SaCas9/tRNA-sgRNA systems were shown to edit the medaka genome effectively, while the PAM sequence is an essential part for the efficiency of editing. Besides, tRNA can improve the flexibility of the system by enabling the sgRNA to be controlled by a common promoter such as cytomegalovirus. Moreover, the all-in-one cassette cytomegalovirus (CMV)-SaCas9-tRNA-sgRNA-tRNA is functional in medaka gene editing. Taken together, the codon-optimized SaCas9 system provides an alternative and smaller tool to edit the medaka genome and potentially other fish genomes.
[1]BalboaD, WeltnerJ, NovikY, et al., 2017. Generation of a SOX2 reporter human induced pluripotent stem cell line using CRISPR/SaCas9. Stem Cell Res, 22:16-19.
[2]BrooksAK, GajT, 2018. Innovations in CRISPR technology. Curr Opin Biotechnol, 52:95-101.
[3]ChenTS, CavariB, SchartlM, et al., 2017. Identification and expression of conserved and novel RNA variants of medaka pax6b gene. J Exp Zool Part B Mol Dev Evol, 328(5):412-422.
[4]DickinsonDJ, WardJD, ReinerDJ, et al., 2013. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods, 10(10):1028-1034.
[5]DongFP, XieKB, ChenYY, et al., 2017. Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells. Biochem Biophys Res Commun, 482(4):889-895.
[6]FangJ, ChenTS, PanQH, et al., 2018. Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9. J Exp Zool Part B Mol Dev Evol, 330(4):242-246.
[7]FengY, ChenC, HanYX, et al., 2016. Expanding CRISPR/Cas9 genome editing capacity in zebrafish using SaCas9. G3 Genes Genom Genet, 6(8):2517-2521.
[8]FriedlandAE, BaralR, SinghalP, et al., 2015. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol, 16:257.
[9]GratzSJ, CummingsAM, NguyenJN, et al., 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 194(4):1029-1035.
[10]HuZY, WangS, ZhangCD, et al., 2020. A compact Cas9 ortholog from Staphylococcus auricularis (SauriCas9) expands the DNA targeting scope. PLoS Biol, 18(3):e3000686.
[11]HwangWY, FuYF, ReyonD, et al., 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 31(3):227-229.
[12]JinekM, ChylinskiK, FonfaraI, et al., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096):816-821.
[13]KatayamaS, SatoK, NakazawaT, 2019. In vivo and in vitro knockout system labelled using fluorescent protein via microhomology-mediated end joining. Life Sci Alliance, 3(1):e201900528.
[14]KleinstiverBP, PrewMS, TsaiSQ, et al., 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 523(7561):481-485.
[15]LiH, ShengCY, LiuHB, et al., 2018. Inhibition of HBV expression in HBV transgenic mice using AAV-delivered CRISPR-SaCas9. Front Immunol, 9:2080.
[16]MaCF, ZhuCZ, ZhengM, et al., 2019. CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Hortic Res, 6:20.
[17]MakarovaKS, HaftDH, BarrangouR, et al., 2011a. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 9(6):467-477.
[18]MakarovaKS, AravindL, WolfYI, et al., 2011b. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct, 6:38.
[19]MakarovaKS, WolfYI, AlkhnbashiOS, et al., 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 13(11):722-736.
[20]MefferdAL, KornepatiAVR, BogerdHP, et al., 2015. Expression of CRISPR/Cas single guide RNAs using small tRNA promoters. RNA, 21(9):1683-1689.
[21]MojicaFJM, Díez-VillaseñorC, García-MartínezJ, et al., 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155(3):733-740.
[22]NakaarV, DareAO, HongD, et al., 1994. Upstream tRNA genes are essential for expression of small nuclear and cytoplasmic RNA genes in trypanosomes. Mol Cell Biol, 14(10):6736-6742.
[23]NumamotoM, MaekawaH, KanekoY, 2017. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha. J Biosci Bioeng, 124(5):487-492.
[24]PanQH, LuoJZ, JiangYW, et al., 2022. Efficient gene editing in a medaka (Oryzias latipes) cell line and embryos by SpCas9/tRNA-gRNA. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(1):74-83.
[25]PanQH, LuK, LuoJZ, et al., 2023a. Japanese medaka Olpax6.1 mutant as a potential model for spondylo-ocular syndrome. Funct Integr Genomics, 23(2):168.
[26]PanQH, LuoJZ, JiangYW, et al., 2023b. Medaka (Oryzias latipes) Olpax6.2 acquires maternal inheritance and germ cells expression, but functionally degenerate in the eye. Gene, 872:147439.
[27]PortF, BullockSL, 2016. Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNA. Nat Methods, 13:852-854.
[28]QiWW, ZhuT, TianZR, et al., 2016. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol, 16:58.
[29]RanFA, CongL, YanWX, et al., 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520(7546):186-191.
[30]ShirakiT, KawakamiK, 2018. A tRNA-based multiplex sgRNA expression system in zebrafish and its application to generation of transgenic albino fish. Sci Rep, 8:13366.
[31]SwiechL, HeidenreichM, BanerjeeA, et al., 2015. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol, 33(1):102-106.
[32]WangLL, YangY, BretonC, et al., 2020. A mutation-independent CRISPR-Cas9-mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency. Sci Adv, 6(7):eaax5701.
[33]WangQK, LiuS, LiuZP, et al., 2018. Genome scale screening identification of SaCas9/gRNAs for targeting HIV-1 provirus and suppression of HIV-1 infection. Virus Res, 250:21-30.
[34]WiedenheftB, SternbergSH, DoudnaJA, 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 482(7385):331-338.
[35]WuH, LiuQS, ShiH, et al., 2018. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Cell Mol Life Sci, 75(19):3593-3607.
[36]XieHH, TangLC, HeXB, et al., 2018. SaCas9 requires 5'-NNGRRT-3' PAM for sufficient cleavage and possesses higher cleavage activity than SpCas9 or FnCpf1 in human cells. Biotechnol J, 13(3):1800080.
[37]XieKB, MinkenbergB, YangYN, 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA, 112(11):3570-3575.
[38]YangZX, FuYW, ZhaoJJ, et al., 2022. Superior fidelity and distinct editing outcomes of SaCas9 compared to SpCas9 in genome editing. Genom Proteom Bioinf, 21(6):1206-1220.
[39]ZhangXY, LiangPP, DingCH, et al., 2016. Efficient production of gene-modified mice using Staphylococcus aureus Cas9. Sci Rep, 6:32565.
[40]ZhangYP, WangJ, WangZB, et al., 2019. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat Commun, 10:1053.
Open peer comments: Debate/Discuss/Question/Opinion
<1>