Full Text:   <529>

Summary:  <38>

CLC number: 

On-line Access: 2024-12-30

Received: 2023-12-14

Revision Accepted: 2024-02-26

Crosschecked: 2024-12-30

Cited: 0

Clicked: 856

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Tomislav CERNAVA

https://orcid.org/0000-0001-7772-4080

Yun CHEN

https://orcid.org/0000-0002-5663-2352

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2024 Vol.25 No.12 P.1039-1054

http://doi.org/10.1631/jzus.B2300914


Implications of bacteria‒bacteria interactions within the plant microbiota for plant health and productivity


Author(s):  Giovanni Davide BARONE, Yaqi ZHOU, Hongkai WANG, Sunde XU, Zhonghua MA, Tomislav CERNAVA, Yun CHEN

Affiliation(s):  State Key Laboratory of Rice Biology and Breeding; more

Corresponding email(s):   chenyun0927@zju.edu.cn, tomislav.cernava@tugraz.at

Key Words:  Plant microbiome, Bacteria‒, bacteria interaction, Plant pathogen, Crop production, Molecular interaction


Share this article to: More |Next Article >>>

Giovanni Davide BARONE, Yaqi ZHOU, Hongkai WANG, Sunde XU, Zhonghua MA, Tomislav CERNAVA, Yun CHEN. Implications of bacteria‒bacteria interactions within the plant microbiota for plant health and productivity[J]. Journal of Zhejiang University Science B, 2024, 25(12): 1039-1054.

@article{title="Implications of bacteria‒bacteria interactions within the plant microbiota for plant health and productivity",
author="Giovanni Davide BARONE, Yaqi ZHOU, Hongkai WANG, Sunde XU, Zhonghua MA, Tomislav CERNAVA, Yun CHEN",
journal="Journal of Zhejiang University Science B",
volume="25",
number="12",
pages="1039-1054",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300914"
}

%0 Journal Article
%T Implications of bacteria‒bacteria interactions within the plant microbiota for plant health and productivity
%A Giovanni Davide BARONE
%A Yaqi ZHOU
%A Hongkai WANG
%A Sunde XU
%A Zhonghua MA
%A Tomislav CERNAVA
%A Yun CHEN
%J Journal of Zhejiang University SCIENCE B
%V 25
%N 12
%P 1039-1054
%@ 1673-1581
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300914

TY - JOUR
T1 - Implications of bacteria‒bacteria interactions within the plant microbiota for plant health and productivity
A1 - Giovanni Davide BARONE
A1 - Yaqi ZHOU
A1 - Hongkai WANG
A1 - Sunde XU
A1 - Zhonghua MA
A1 - Tomislav CERNAVA
A1 - Yun CHEN
J0 - Journal of Zhejiang University Science B
VL - 25
IS - 12
SP - 1039
EP - 1054
%@ 1673-1581
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300914


Abstract: 
crop production currently relies on the widespread use of agrochemicals to ensure food security. This practice is considered unsustainable, yet has no viable alternative at present. The plant microbiota can fulfil various functions for its host, some of which could be the basis for developing sustainable protection and fertilization strategies for plants without relying on chemicals. To harness such functions, a detailed understanding of plant‒microbe and microbe‒microbe interactions is necessary. Among interactions within the plant microbiota, those between bacteria are the most common ones; they are not only of ecological importance but also essential for maintaining the health and productivity of the host plants. This review focuses on recent literature in this field and highlights various consequences of bacteria‒;bacteria interactions under different agricultural settings. In addition, the molecular and genetic backgrounds of bacteria that facilitate such interactions are emphasized. Representative examples of commonly found bacterial metabolites with bioactive properties, as well as their modes of action, are given. Integrating our understanding of various binary interactions into complex models that encompass the entire microbiota will benefit future developments in agriculture and beyond, which could be further facilitated by artificial intelligence-based technologies.

植物微生物群落中细菌-细菌互作对植物健康和生产力的影响

Giovanni Davide BARONE2,周雅琦1,汪宏凯1,徐孙德1,马忠华1,Tomislav CERNAVA3,陈云1
1水稻生物育种全国重点实验室;农业农村部作物病虫分子生物学重点实验室;浙江省作物病虫生物学重点实验室;浙江大学生物技术研究所,中国杭州市,310058
2格拉茨大学生物学研究所,奥地利格拉茨,8010
3南安普顿大学环境与生命科学学部生物科学学院,英国南安普顿,SO17 1BJ
摘要:化学农药防治是当前农业生产中防治作物病虫害最主要的措施,对粮食安全生产起到至关重要的作用。化学农药的不合理使用会导致有害生物抗药性和环境污染等问题,因此利用有益农业微生物资源控制作物有害生物被认为是替代化学防治的可持续举措之一。植物微生物群落对宿主植物的生长发育等具有重要作用,其中部分微生物具有开发为微生物农药和肥料的潜力。全面解析微生物群落中细菌之间的相互作用及其生态功能,对合理利用微生物菌落的功能来维持植物的健康和生产力至关重要。本综述重点关注微生物群落中细菌-细菌之间互作机理及其在不同环境下对作物发育与健康的影响,并强调如何通过调控这种互作改善作物生长环境,以及小分子物质和信号调控通路在细菌-细菌相互作用中的关键作用。本文列举了具有生物活性的细菌代谢产物介导细菌-细菌互作的典型案例及其互作机制。未来需要充分利用人工智能等先进技术,将微生物群落中各种二元互作方式整合到整个微生物组的复杂模型中,以进一步了解微生物群落中各组分间的互作机理,为更好地利用农业有益微生物资源解决作物病虫害等问题提供解决方案。

关键词: 植物微生物组;细菌-细菌互作;植物病原物;农作物生产;分子机理

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AhmedE,HolmströmSJM,2014.Siderophores in environmental research: roles and applications.Microb Biotechnol,7(3):196-208.

[2]AnsariFA,AhmadI,2019.Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes.Sci Rep,9:4547.

[3]BaarsO,ZhangXN,MorelFMM,et al.,2016.The siderophore metabolome of Azotobacter vinelandii.Appl Environ Microbiol,82(1):27-39.

[4]BaileyDC,AlexanderE,RiceMR,et al.,2018.Structural and functional delineation of aerobactin biosynthesis in hypervirulentKlebsiella pneumoniae.J Biol Chem,293(20):7841-7852.

[5]BaisHP,FallR,VivancoJM,2004.Biocontrol ofBacillus subtilis against infection of Arabidopsis roots byPseudomonas syringae is facilitated by biofilm formation and surfactin production.Plant Physiol,134(1):307-319.

[6]BanikA,MukhopadhayaSK,DangarTK,2016.Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.)genotypes. Planta,243(3):799-812.

[7]BarrySM,ChallisGL,2009.Recent advances in siderophore biosynthesis.Curr Opin Chem Biol,13(2):205-215.

[8]BauneM,QiYL,ScholzK,et al.,2017.Structural characterization of pyoverdines produced byPseudomonas putida KT2440 andPseudomonas taiwanensis VLB120.BioMetals,30(4):589-597.

[9]BeauregardPB,ChaiYR,VlamakisH,et al.,2013.Bacillus subtilis biofilm induction by plant polysaccharides.Proc Natl Acad Sci USA,110(17):E1621-E1630.

[10]BergG,RybakovaD,FischerD,et al.,2020.Microbiome definition re-visited: old concepts and new challenges.Microbiome,8:103.

[11]BergG,KusstatscherP,AbdelfattahA,et al.,2021.Microbiome modulation—toward a better understanding of plant microbiome response to microbial inoculants.Front Microbiol,12:650610.

[12]BernalP,AllsoppLP,FillouxA,et al.,2017.ThePseudomonas putida T6SS is a plant warden against phytopathogens.ISME J,11(4):972-987.

[13]BiróB,Köves-PéchyK,Tsimilli-MichaelM,et al.,2006.Role of beneficial microsymbionts on the plant performance and plant fitness. In: Mukerji KG, Manoharachary C, Singh J (Eds.),Microbial Activity in the Rhizosphere.Springer,Berlin, Heidelberg, p.265-296.

[14]BritoIL,2021.Examining horizontal gene transfer in microbial communities.Nat Rev Microbiol,19(7):442-453.

[15]BurbankL,MohammadiM,RoperMC,2015.Siderophore-mediated iron acquisition influences motility and is required for full virulence of the xylem-dwelling bacterial phytopathogenPantoea stewartii subsp.stewartii. Appl Environ Microbiol,81(1):139-148.

[16]CernavaT,2021.How microbiome studies could further improve biological control.Biol Control,160:104669.

[17]CernavaT,BergG,2022.The emergence of disease-preventing bacteria within the plant microbiota.Environ Microbiol,24(8):3259-3263.

[18]ChaudhryS,SidhuGPS,2022.Climate change regulated abiotic stress mechanisms in plants: a comprehensive review.Plant Cell Rep,41(1):1-31.

[19]ChenY,WangJ,YangN,et al.,2018.Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation.Nat Commun,9:3429.

[20]ChungS,KongH,BuyerJS,et al.,2008.Isolation and partial characterization ofBacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper.Appl Microbiol Biotechnol,80(1):115-123.

[21]Combes-MeynetE,PothierJF,Moënne-LoccozY,et al.,2011.ThePseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression ofAzospirillum genes involved in plant-growth promotion.Mol Plant-Microbe Int,24(2):271-284.

[22]DanhornT,FuquaC,2007.Biofilm formation by plant-associated bacteria.Annu Rev Microbiol,61:401-422.

[23]DeoriM,JayamohanNS,KumudiniBS,2018.Production, characterization and iron binding affinity of hydroxamate siderophores from rhizosphere associated fluorescent Pseudomonas.J Plant Prot Res,58(1):36-43.

[24]D'SouzaG,ShitutS,PreussgerD,et al.,2018.Ecology and evolution of metabolic cross-feeding interactions in bacteria.Nat Prod Rep,35(5):455-488.

[25]ElshafieHS,CameleI,RacioppiR,et al.,2012.In vitro antifungal activity ofBurkholderia gladioli pv.agaricicola against some phytopathogenic fungi. Int J Mol Sci,13(12):16291-16302.

[26]FanWJ,DengJM,ShaoL,et al.,2022.The rhizosphere micro

[27]biome improves the adaptive capabilities of plants under high soil cadmium conditions.Front Plant Sci,13:914103.

[28]FerreiraCMH,SoaresHMVM,SoaresEV,2019.Promising bacterial genera for agricultural practices: an insight on plant growth-promoting properties and microbial safety aspects.Sci Total Environ,682:779-799.

[29]FinkelOM,Salas-GonzálezI,CastrilloG,et al.,2020.A single bacterial genus maintains root growth in a complex microbiome.Nature,587(7832):103-108.

[30]GalánJE,WaksmanG,2018.Protein-injection machines in bacteria.Cell,172(6):1306-1318.

[31]GállT,LehoczkiG,GyémántG,et al.,2016.Optimization of desferrioxamine E production byStreptomyces parvulus.Acta Microbiol Immunol Hung,63(4):475-489.

[32]GarbevaP,WeisskopfL,2020.Airborne medicine: bacterial volatiles and their influence on plant health.New Phytol,226(1):32-43.

[33]GarciaJ,GannettM,WeiLP,et al.,2022.Selection pressure on the rhizosphere microbiome can alter nitrogen use efficiency and seed yield inBrassica rapa.Commun Biol,5:959.

[34]García-BayonaL,ComstockLE,2018.Bacterial antagonism in host-associated microbial communities.Science,361(6408):eaat2456.

[35]GercAJ,Stanley-WallNR,CoulthurstSJ,2014.Role of the phosphopantetheinyltransferase enzyme, PswP, in the biosynthesis of antimicrobial secondary metabolites bySerratia marcescens Db10.Microbiology,160(8):1609-1617.

[36]GoudjalY,ZamoumM,MeklatA,et al.,2016.Plant-growth-promoting potential of endosymbiotic actinobacteria isolated from sand truffles (Terfezia leonis Tul.)of the Algerian Sahara. Ann Microbiol,66(1):91-100.

[37]GuQ,YangY,YuanQM,et al.,2017.Bacillomycin D produced byBacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungusFusarium graminearum.Appl Environ Microbiol,83(19):e01075-17.

[38]HanSI,JeonMS,HeoYM,et al.,2020.Effect ofPseudoalteromonas sp. MEBiC 03485 on biomass production and sulfated polysaccharide biosynthesis in Porphyridium cruentum UTEX 161.Bioresour Technol,302:122791.

[39]HassaniMA,DuránP,HacquardS,2018.Microbial interactions within the plant holobiont.Microbiome,6:58.

[40]HawkesCV,KjøllerR,RaaijmakersJM,et al.,2021.Extension of plant phenotypes by the foliar microbiome.Annu Rev Plant Biol,72:823-846.

[41]Hernández MedinaR,KutuzovaS,NielsenKN,et al.,2022.Machine learning and deep learning applications in microbiome research.ISME Commun,2(1):98.

[42]HoBT,DongTG,MekalanosJJ,2014.A view to a kill: the bacterial type VI secretion system.Cell Host Microbe,15(1):9-21.

[43]HoshinoY,ChibaK,IshinoK,et al.,2011.Identification of nocobactin NA biosynthetic gene clusters inNocardia farcinica.J Bacteriol,193(2):441-448.

[44]JainA,ChatterjeeA,DasS,2020.Synergistic consortium of beneficial microorganisms in rice rhizosphere promotes host defense to blight-causingXanthomonas oryzae pv.oryzae. Planta,252(6):106.

[45]JinPF,WangY,TanZ,et al.,2020.Antibacterial activity and rice-induced resistance, mediated by C15surfactin A, in controlling rice disease caused byXanthomonas oryzae pv.oryzae. Pestic Biochem Physiol,169:104669.

[46]KanchiswamyCN,MalnoyM,MaffeiME,2015.Chemical diversity of microbial volatiles and their potential for plant growth and productivity.Front Plant Sci,6:151.

[47]KesaulyaH,HasinuJV,TuhumuryGNC,2018.Potential ofBacillusspp produces siderophores insuppressing thewilt disease of banana plants.IOP Conf Ser Earth Environ Sci,102:012016.

[48]KoutsoudisMD,TsaltasD,MinogueTD,et al.,2006.Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization inPantoea stewartii subspeciesstewartii.Proc Natl Acad Sci USA,103(15):5983-5988.

[49]KuiperI,LagendijkEL,PickfordR,et al.,2004.Characterization of twoPseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms.Mol Microbiol,51(1):97-113.

[50]LallyRD,GalballyP,MoreiraAS,et al.,2017.Application of endophyticPseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions.Front Plant Sci,8:2193.

[51]LazdunskiAM,VentreI,SturgisJN,2004.Regulatory circuits and communication in Gram-negative bacteria.Nat Rev Microbiol,2(7):581-592.

[52]LiSY,XiaoJ,SunTZ,et al.,2022.Synthetic microbial consortia with programmable ecological interactions.Methods Ecol Evol,13(7):1608-1621.

[53]LiaoJX,LiZH,XiongD,et al.,2023.Quorum quenching by a type IVA secretion system effector.ISME J,17(10):1564-1577.

[54]LiuHW,BrettellLE,QiuZG,et al.,2020.Microbiome-mediated stress resistance in plants.Trends Plant Sci,25(8):733-743.

[55]LyngM,KovácsÁT,2023.Frenemies of the soil:Bacillus andPseudomonas interspecies interactions. Trends Microbiol,31(8):845-857.

[56]MatsumotoH,FanXY,WangY,et al.,2021.Bacterial seed endophyte shapes disease resistance in rice.Nat Plants,7(1):60-72.

[57]McRoseDL,BaarsO,MorelFMM,et al.,2017.Siderophore production inAzotobacter vinelandii in response to Fe-, Mo- and V-limitation.Environ Microbiol,19(9):3595-3605.

[58]Molina-SantiagoC,PearsonJR,NavarroY,et al.,2019.The extracellular matrix protectsBacillus subtilis colonies fromPseudomonas invasion and modulates plant co-colonization.Nat Commun,10:1919.

[59]MuellerUG,JuengerTE,KardishMR,et al.,2021.Artificial selection on microbiomes to breed microbiomes that confer salt tolerance to plants.mSystems,6(6):e0112521.

[60]MunirN,HanifM,AbideenZ,et al.,2022.Mechanisms and strategies of plant microbiome interactions to mitigate abiotic stresses.Agronomy,12(9):2069.

[61]NakkeeranS,SuryaT,VinodkumarS,2020.Antifungal potential of plant growth promotingBacillus species against blossom blight of rose.J Plant Growth Regul,39(1):99-111.

[62]NiuB,PaulsonJN,ZhengXQ,et al.,2017.Simplified and representative bacterial community of maize roots.Proc Natl Acad Sci USA,114(12):E2450-E2459.

[63]ÖzcengizG,Öğülürİ,2015.Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic.New Biotechnol,32(6):612-619.

[64]PourbabaeeAA,ShoaibiF,EmamiS,et al.,2018.The potential contribution of siderophore producing bacteria on growth and Fe ion concentration of sunflower (Helianthus annuus L.)under water stress. J Plant Nutr,41(5):619-626.

[65]Purtschert-MontenegroG,Cárcamo-OyarceG,Pinto-CarbóM,et al.,2022.Pseudomonas putida mediates bacterial killing, biofilm invasion and biocontrol with a type IVB secretion system.Nat Microbiol,7(10):1547-1557.

[66]RaaijmakersJM,de BruijnI,NybroeO,et al.,2010.Natural functions of lipopeptides fromBacillus andPseudomonas: more than surfactants and antibiotics.FEMS Microbiol Rev,34(6):1037-1062.

[67]RajkumarM,PrasadMNV,SwaminathanS,et al.,2013.Climate change driven plant‒metal‒microbe interactions.Environ Int,53:74-86.

[68]Rändler-KleineM,WolfgangA,DietelK,et al.,2020.How microbiome approaches can assist industrial development of biological control products. In: Gao YL, Hokkanen HMT, Menzler-Hokkanen I (Eds.),Integrative Biological Control.Springer,Cham, p.201-215.

[69]RazaW,WangJN,JoussetA,et al.,2020.Bacterial community richness shifts the balance between volatile organic compound-mediated microbe‒pathogen and microbe‒plant interactions.Proc Roy Soc B Biol Sci,287(1925):20200403.

[70]RocaA,Pizarro-TobíasP,UdaondoZ,et al.,2013.Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacteriumPseudomonas putida BIRD-1.Environ Microbiol,15(3):780-794.

[71]Romero-PerdomoF,AbrilJ,CameloM,et al.,2017.Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): effect in reducing N fertilization.Rev Argent Microbiol,49(4):377-383.

[72]SandyM,ButlerA,2011.Chrysobactin siderophores produced byDickeya chrysanthemi EC16.J Nat Prod,74(5):1207-1212.

[73]SchäferM,VogelCM,Bortfeld-MillerM,et al.,2022.Mapping phyllosphere microbiota interactions in planta to establish genotype‒phenotype relationships.Nat Microbiol,7(6):856-867.

[74]Schulz-BohmK,GerardsS,HundscheidM,et al.,2018.Calling from distance: attraction of soil bacteria by plant root volatiles.ISME J,12(5):1252-1262.

[75]SchützeE,AhmedE,VoitA,et al.,2015.Siderophore production by streptomycetes—stability and alteration of ferrihydroxamates in heavy metal-contaminated soil.Environ Sci Pollut Res,22(24):19376-19383.

[76]SinghM,AwasthiA,SoniSK,et al.,2015.Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth.Sci Rep,5:15500.

[77]SongGC,RiuM,RyuCM,2019.Beyond the two compartments Petri-dish: optimising growth promotion and induced resistance in cucumber exposed to gaseous bacterial volatiles in a miniature greenhouse system.Plant Methods,15:9.

[78]SoutarCD,StavrinidesJ,2018.The evolution of three siderophore biosynthetic clusters in environmental and host-associating strains ofPantoea.Mol Genet Genomics,293(6):1453-1467.

[79]SuP,KangHX,PengQZ,et al.,2024.Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis.Nat Commun,15:23.

[80]SunXL,XuZH,XieJY,et al.,2022.Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions.ISME J,16(3):774-787.

[81]TanJQ,KerstetterJE,TurcotteMM,2021.Eco-evolutionary interaction between microbiome presence and rapid biofilm evolution determines plant host fitness.Nat Ecol Evol,5(5):670-676.

[82]TassinariM,DoanT,BellinzoniM,et al.,2022.The antibacterial type VII secretion system ofBacillus subtilis: structure and interactions of the pseudokinase YukC/EssB.mBio,13(5):e0013422.

[83]TsugeK,InoueS,AnoT,et al.,2005.Horizontal transfer of iturin A operon,itu, toBacillus subtilis 168 and conversion into an iturin A producer.Antimicrob Agents Chemother,49(11):4641-4648.

[84]VenturiV,BezC,2021.A call to arms for cell‒cell interactions between bacteria in the plant microbiome.Trends Plant Sci,26(11):1126-1132.

[85]WangJJ,XuS,YangR,et al.,2021.Bacillus amyloliquefaciens FH-1 significantly affects cucumber seedlings and the rhizosphere bacterial community but not soil.Sci Rep,11:12055.

[86]WangMC,CernavaT,2023.Soterobionts: disease-preventing microorganisms and proposed strategies to facilitate their discovery.Curr Opin Microbiol,75:102349.

[87]WeiZ,YangTJ,FrimanVP,et al.,2015.Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health.Nat Commun,6:8413.

[88]WeiseT,KaiM,GummessonA,et al.,2012.Volatile organic compounds produced by the phytopathogenic bacteriumXanthomonas campestris pv.vesicatoria 85-10. Beilstein J Org Chem,8:579-596.

[89]XuSD,LiuYX,CernavaT,et al.,2022.Fusarium fruiting body microbiome memberPantoea agglomerans inhibits fungal pathogenesis by targeting lipid rafts. Nat Microbiol,7(6):831-843.

[90]YangRH,ShiQ,HuangTT,et al.,2023.The natural pyrazolotriazine pseudoiodinine fromPseudomonas mosselii 923 inhibits plant bacterial and fungal pathogens.Nat Commun,14:734.

[91]YannarellSM,GrandchampGM,ChenSY,et al.,2019.A dual-species biofilm with emergent mechanical and protective properties.J Bacteriol,201(18):e00670-18.

[92]YinXT,XuLN,XuL,et al.,2011.Evaluation of the efficacy of endophyticBacillus amyloliquefaciens againstBotryosphaeria dothidea and other phytopathogenic microorganisms.Afr J Microbiol Res,5(4):340-345.

[93]YuanWF,RuanS,QiGF,et al.,2022.Plant growth-promoting and antibacterial activities of cultivable bacteria alive in tobacco field againstRalstonia solanacearum.Environ Microbiol,24(3):1411-1429.

[94]YuanZL,DruzhininaIS,LabbéJ,et al.,2016.Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity.Sci Rep,6:32467.

[95]ZengXY,ZouYM,ZhengJ,et al.,2023.Quorum sensing-mediated microbial interactions: mechanisms, applications, challenges and perspectives.Microbiol Res,273:127414.

[96]ZeriouhH,RomeroD,García-GutiérrezL,et al.,2011.The iturin-like lipopeptides are essential components in the biological control arsenal ofBacillus subtilis against bacterial diseases of cucurbits.Mol Plant Microbe Interact,24(12):1540-1552.

[97]ZhangWL,ZhangY,WangXX,et al.,2017.Siderophores in clinical isolates ofKlebsiella pneumoniae promote ciprofloxacin resistance by inhibiting the oxidative stress.Biochem Biophys Res Commun,491(3):855-861.

[98]ZhangXX,MaYN,WangX,et al.,2022.Dynamics of rice microbiomes reveal core vertically transmitted seed endophytes.Microbiome,10:216.

[99]ZhouYQ,WangHK,XuSD,et al.,2022.Bacterial‒fungal interactions under agricultural settings: from physical to chemical interactions.Stress Biol,2:22.

[100]ZhuSB,HongJK,WangT,2024.Horizontal gene transfer is predicted to overcome the diversity limit of competing microbial species.Nat Commun,15:800.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE