Full Text:   <3199>

CLC number: O441.5

On-line Access: 2011-03-09

Received: 2009-12-20

Revision Accepted: 2010-04-12

Crosschecked: 2010-12-06

Cited: 0

Clicked: 4751

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2011 Vol.12 No.3 P.250-262

http://doi.org/10.1631/jzus.C0910777


Calculating the transient behavior of grounding systems using inverse Laplace transform


Author(s):  Nabiollah Ramezani, Seyed Mohammad Shahrtash

Affiliation(s):  Behshahr Branch, Iran University of Science and Technology, Behshahr 47137, Iran, Center of Excellence for Power Systems Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran 16844, Iran

Corresponding email(s):   n_ramezani@iust.ac.ir, shahrtash@iust.ac.ir

Key Words:  Electromagnetic field, Near-field computation, High frequency performance, Soil ionization, Grounding system, Fast inverse Laplace transform


Share this article to: More <<< Previous Article|

Nabiollah Ramezani, Seyed Mohammad Shahrtash. Calculating the transient behavior of grounding systems using inverse Laplace transform[J]. Journal of Zhejiang University Science C, 2011, 12(3): 250-262.

@article{title="Calculating the transient behavior of grounding systems using inverse Laplace transform",
author="Nabiollah Ramezani, Seyed Mohammad Shahrtash",
journal="Journal of Zhejiang University Science C",
volume="12",
number="3",
pages="250-262",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C0910777"
}

%0 Journal Article
%T Calculating the transient behavior of grounding systems using inverse Laplace transform
%A Nabiollah Ramezani
%A Seyed Mohammad Shahrtash
%J Journal of Zhejiang University SCIENCE C
%V 12
%N 3
%P 250-262
%@ 1869-1951
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C0910777

TY - JOUR
T1 - Calculating the transient behavior of grounding systems using inverse Laplace transform
A1 - Nabiollah Ramezani
A1 - Seyed Mohammad Shahrtash
J0 - Journal of Zhejiang University Science C
VL - 12
IS - 3
SP - 250
EP - 262
%@ 1869-1951
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C0910777


Abstract: 
This paper deals with a unified and novel approach for analyzing the frequency and time domain performance of grounding systems. The proposed procedure is based on solving the full set of Maxwell’s equations in the frequency domain, and enables the exact computation of very near fields at the surface of the grounding grid, as well as far fields, by simple and accurate closed-form expressions for solving Sommerfeld integrals. In addition, the soil ionization is easily considered in the proposed method. The frequency domain responses are converted to the time domain by fast inverse Laplace transform. The results are validated and have shown acceptable accuracy.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Andolfato, R., Bernardi, L., Fellin, L., 2000. Aerial and grounding systems analysis by the shifting complex images method. IEEE Trans. Power Del., 15(3):1001-1009.

[2]Arnautovski-Toseva, V., Grcev, L., 2004. Electromagnetic analysis of horizontal wire in two-layered soil. J. Comput. Appl. Math., 168(1-2):21-29.

[3]Cidras, J., Otero, A.F., Garrido, C., 2000. Nodal frequency analysis of grounding systems considering the soil ionization effect. IEEE Trans. Power Del., 15(1):103-107.

[4]Doric, V., Poljak, D., Roje, V., 2004. Transient analysis of the grounding electrode based on the wire antenna theory. Eng. Anal. Bound. Elem., 28(7):801-807.

[5]Gao, Y.Q., He, J.L., Zeng, R., Liang, X.D., 2002. Impulse Transient Characteristic of Grounding Grid. 3rd Int. Symp. on Electromagnetic, p.276-280.

[6]Geri, A., 1999. Behavior of ground systems excited by high impulse currents: the model and its validation. IEEE Trans. Power Del., 14(3):1008-1017.

[7]Geri, A., Veca, G.M., Garbagnati, E., Sartorio, G., 1992. Non-linear behavior of ground electrodes under lightning surge currents: computer modeling and comparison with experimental results. IEEE Trans. Magn., 28(2):1442-1445.

[8]Grcev, L., 1986. Calculation of the Transient Impedance of Grounding Systems. PhD Thesis, University of Zagreb, Croatian.

[9]Harrington, R.F., 2001. Time-Harmonic Electromagnetic Fields. Wiley-IEEE Press.

[10]Heimbach, M., Grcev, L.D., 1997. Grounding system analysis in transients programs applying electromagnetic field approach. IEEE Trans. Power Del., 12(1):186-193.

[11]Hosono, T., 1981. Numerical inversion of Laplace transform and some applications to wave optics. Radio Sci., 16(6):1015-1019.

[12]Ishimaru, A., 1991. Electromagnetic Wave Propagation, Radiation, and Scattering. Prentice-Hall Inc., Englewood Cliffs, NJ.

[13]Liu, Y.Q., Zitnik, M., Thottappillil, R., 2001. An improved transmission line model of grounding systems. IEEE Trans. Electromagn. Compat., 43(3):348-355.

[14]Lorentzou, M.I., Hatziargyriou, M.I., Papadias, N.D., 2003. Time domain analysis of grounding electrodes impulse response. IEEE Trans. Power Del., 18(2):517-524.

[15]McAllister, I.W., Crichton, G.C., 1991. Analysis of the temporal electric fields in lossy dielectric media. IEEE Trans. Electr. Insul., 26(3):513-528.

[16]Meliopoulos, A.P., Moharam, M.G., 1983. Transient analysis of grounding systems. IEEE Trans. Power Appar. Syst., 102(2):389-399.

[17]Mentre, F.E., Grcev, L., 1994. EMTP-based model for grounding system analysis. IEEE Trans. Power Del., 9(4):1838-1849.

[18]Otero, A.F., Cidras, J., del Alamo, J.L., 1999. Frequency-dependence grounding system calculation by means of a conventional nodal analysis technique. IEEE Trans. Power Del., 14(3):873-878.

[19]Poljak, D., Doric, V., 2006. Wire antenna model for transient analysis of simple grounding systems, part I: the vertical grounding electrode. Progr. Electromagn. Res., 64:149-166.

[20]Portela, C., 1997. Frequency and Transient Behavior of Grounding Systems, Part I. Physical and Methodological Aspects. IEEE Int. Symp. on Electromagnetic Compatibility, p.379-384.

[21]Ramamoorty, M., Babu Narayanan, M.M., Parameswaran, S., Mukhedkar, D., 1989. Transient performance of grounding grids. IEEE Trans. Power Del., 4(4):2053-2059.

[22]Shahrtash, S.M., Ramezani, N., 2008. A New Approach to Compute Transient Behavior of Grounding Electrodes in Time-Domain. Joint Int. Conf. on Power System Technology and IEEE Power India Conf., p.1-5.

[23]Stutzman, W.L., Thiele, G.A., 1997. Antenna Theory and Design. Wiley, New York.

[24]Tokarsky, P.L., Dolzhikov, V.V., 1998. Simple Approximate Formulas for Evaluating Sommerfeld Type Integrals. VIIth Int. Conf. on Mathematical Methods in Electromagnetic Theory, p.246-248.

[25]Velazquez, R., Mukhedkar, D., 1984. Analytical modeling of grounding electrodes transient behavior. IEEE Trans. Power Appar. Syst., 103(6):1314-1322.

[26]Verma, R., Mukhedkar, D., 1980. Impulse impedance of buried ground wire. IEEE Trans. Power Appar. Syst., 99(5):2003-2007.

[27]Zhang, B., He, J., Lee, J., Cui, X., Zhao, Z., Zou, J., Chang, S., 2005. Numerical analysis of transient performance of grounding systems considering soil ionization by coupling moment method with circuit theory. IEEE Trans. Magn., 41(5):1440-1443.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE