Full Text:   <2615>

CLC number: TN919.8

On-line Access: 2011-02-08

Received: 2010-01-11

Revision Accepted: 2010-05-31

Crosschecked: 2010-12-12

Cited: 0

Clicked: 6569

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2011 Vol.12 No.2 P.163-170


Hash signature saving in distributed video coding

Author(s):  Xin-hao Chen, Xing-guo Zhu, Xiao-lin Shen, Lu Yu

Affiliation(s):  Institute of Information and Communication Engineering, Zhejiang University, Hangzhou 310027, China, Zhejiang Provincial Key Laboratory of Information Network Technology, Hangzhou 310027, China

Corresponding email(s):   chen2xin1hao4@163.com, yul@zju.edu.cn

Key Words:  Distributed video coding (DVC), Hash, Laplacian

Share this article to: More <<< Previous Article|

Xin-hao Chen, Xing-guo Zhu, Xiao-lin Shen, Lu Yu. Hash signature saving in distributed video coding[J]. Journal of Zhejiang University Science C, 2011, 12(2): 163-170.

@article{title="Hash signature saving in distributed video coding",
author="Xin-hao Chen, Xing-guo Zhu, Xiao-lin Shen, Lu Yu",
journal="Journal of Zhejiang University Science C",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Hash signature saving in distributed video coding
%A Xin-hao Chen
%A Xing-guo Zhu
%A Xiao-lin Shen
%A Lu Yu
%J Journal of Zhejiang University SCIENCE C
%V 12
%N 2
%P 163-170
%@ 1869-1951
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1000008

T1 - Hash signature saving in distributed video coding
A1 - Xin-hao Chen
A1 - Xing-guo Zhu
A1 - Xiao-lin Shen
A1 - Lu Yu
J0 - Journal of Zhejiang University Science C
VL - 12
IS - 2
SP - 163
EP - 170
%@ 1869-1951
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1000008

In transform-domain distributed video coding (DVC), the correlation noises (denoted as N) between the source block and its temporal predictor can be modeled as laplacian random variables. In this paper we propose that the noises (denoted as N′) between the source block and its co-located block in a reference frame can also be modeled as laplacian random variables. Furthermore, it is possible to exploit the relationship between N and N′ to improve the performance of the DVC system. A practical scheme based on theoretical insights, the hash signature saving scheme, is proposed. Experimental results show that the proposed scheme saves on average 83.2% of hash signatures, 13.3% of bit-rate, and 3.9% of encoding time.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Aaron, A., Zhang, R., Girod, B., 2002. Wyner-Ziv Coding of Motion Video. Asilomar Conf. on Signals, Systems and Computers, 1:240-244.

[2]Aaron, A., Rane, S., Setton, E., Girod, B., 2004a. Transform-domain Wyner-Ziv codec for video. SPIE, 5308:520.

[3]Aaron, A., Rane, S., Girod, B., 2004b. Wyner-Ziv Video Coding with Hash-Based Motion Compensation at the Receiver. Int. Conf. on Image Processing, p.3097-3100.

[4]Artigas, X., Ascenso, J., Dalai, M., Klomp, S., Kubasov, D., Ouaret, M., 2007. The DISCOVER Codec: Architecture, Techniques and Evaluation. Picture Coding Symp., p.1-4.

[5]Ascenso, J., Pereira, F., 2007. Adaptive Hash-Based Side Information Exploitation for Efficient Wyner-Ziv Video Coding. Int. Conf. on Image Processing, p.1157-1160.

[6]Asif, M., Soraghan, J.J., 2008. Wyner Ziv Codec Design for Surveillance System Using Adaptive Puncturing Rate. 3rd Int. Symp. on Communications, Control and Signal Processing, p.1454-1459.

[7]Bjontegaard, G., 2001. Calculation of Average PSNR Differences Between RD-Curves. VCEG-M33, 13th Meeting.

[8]Brites, C., Pereira, F., 2007. Encoder Rate Control for Transform Domain Wyner-Ziv Video Coding. IEEE Int. Conf. on Image Processing, p.569-572.

[9]Cote, G., Erol, B., Gallant, M., Kossentini, F., 1998. H.263+: Video coding at low bit rates. IEEE Trans. Circ. Syst. Video Technol., 8(7):849-866.

[10]Dufaux, F., Gao, W., Tubaro, S., Vetro, A., 2009. Distributed video coding: trends and perspectives. EURASIP J. Image Video Process.

[11]Fowler, J.E., 2005. An Implementation of PRISM Using QccPack. Technical Report MSSU-COE-ERC-05-01, Mississippi State University. Available from http://www.ece.msstate.edu/~fowler/Publications/Papers/Fow2005.pdf

[12]Girod, B., Aaron, A., Rane, S., Rebollo-Monedero, D., 2005. Distributed video coding. Proc. IEEE, 93(1):71-83.

[13]Guillemot, C., Pereira, F., Torres, L., Ebrahimi, T., Leonardi, R., Ostermann, J., 2007. Distributed monoview and multi-view video coding. IEEE Signal Process. Mag., 24(5):67-76.

[14]Guo, M., Lu, Y., Wu, F., Li, S.P., Gao, W., 2007. Distributed Video Coding with Spatial Correlation Exploited Only at the Decoder. IEEE Int. Symp. on Circuits and Systems, p.41-44.

[15]Hua, G., Chen, C.W., 2008. Distributed Video Coding with Zero Motion Skip and Efficient DCT Coefficient Encoding. IEEE Int. Conf. on Multimedia and Expo, p.777-780.

[16]ISO/IEC 13818-2:1994. Generic Coding of Moving Pictures and Associated Audio Information—Part 2: Video.

[17]ISO/IEC 14496-10:2003. Coding of Audiovisual Objects— Part 10: Advanced Video Coding.

[18]ITU-T Recommendation H.264, 2003. Advanced Video Coding for Generic Audiovisual Services.

[19]Kuganeswaran, T., Fernando, X., Guan, L., 2008. Distributed Video Coding and Transmission over Wireless Fading Channel. Canadian Conf. on Electrical and Computer Engineering, p.1513-1516.

[20]Mukherjee, D., 2009. Parameter selection for Wyner-Ziv coding of Laplacian sources with additive Laplacian or Gaussian innovation. IEEE Trans. Signal Process., 57(8):3208-3225.

[21]Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammer, T., Wedi, T., 2004. Video coding with H.264/AVC: tools, performance, and complexity. IEEE Circ. Syst. Mag., 4(1):7-28.

[22]Pereira, F., Torres, L., Guillemot, C., Ebrahimi, T., Leonardi, R., Klomp, S., 2008. Distributed video coding: selecting the most promising application scenarios. Signal Process. Image Commun., 23(5):339-352.

[23]Puri, R., Ramchandran, K., 2003. PRISM: a “Reversed” Multimedia Coding Paradigm. IEEE Int. Conf. on Image Processing, p.617-620.

[24]Puri, R., Majumdar, A., Ramchandran, K., 2007. PRISM: a video coding paradigm with motion estimation at the decoder. IEEE Trans. Image Process., 16(10):2436-2448.

[25]Slepian, J.D., Wolf, J.K., 1973. Noiseless coding of correlated information sources. IEEE Trans. Inform. Theory, 19(4):471-480.

[26]Taewon, D., Hiuk, J.S., Byeungwoo, J., 2009. Motion Linearity Based Skip Decision for Wyner-Ziv Coding. 2nd IEEE Int. Conf. on Computer Science and Information Technology, p.410-413.

[27]Varodayan, D., Chen, D., Flierl, M., Girod, B., 2008. Wyner-Ziv coding of video with unsupervised motion vector learning. Signal Process. Image Commun., 23(5):369-378.

[28]Wedi, T., Musmann, H.G., 2003. Motion- and aliasing-compensated prediction for hybrid video coding. IEEE Trans. Circ. Syst. Video Technol., 13(7):577-587.

[29]Wyner, A.D., 1974. Recent results in the Shannon theory. IEEE Trans. Inform. Theory, 20(1):2-10.

[30]Wyner, A.D., Ziv, J., 1976. The rate-distortion function for source coding with side information at the decoder. IEEE Trans. Inform. Theory, 22(1):1-10.

[31]Yang, S.T., Zhao, M.J., Qiu, P.L., 2007. On Wyner-Ziv problem for general sources with average distortion criterion. J. Zhejiang Univ.-Sci. A, 8(8):1263-1270.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE