CLC number: TP391
On-line Access: 2011-03-09
Received: 2010-03-02
Revision Accepted: 2010-09-28
Crosschecked: 2011-01-31
Cited: 6
Clicked: 8729
Qing-zheng Xu, Lei Wang. Recent advances in the artificial endocrine system[J]. Journal of Zhejiang University Science C, 2011, 12(3): 171-183.
@article{title="Recent advances in the artificial endocrine system",
author="Qing-zheng Xu, Lei Wang",
journal="Journal of Zhejiang University Science C",
volume="12",
number="3",
pages="171-183",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1000044"
}
%0 Journal Article
%T Recent advances in the artificial endocrine system
%A Qing-zheng Xu
%A Lei Wang
%J Journal of Zhejiang University SCIENCE C
%V 12
%N 3
%P 171-183
%@ 1869-1951
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1000044
TY - JOUR
T1 - Recent advances in the artificial endocrine system
A1 - Qing-zheng Xu
A1 - Lei Wang
J0 - Journal of Zhejiang University Science C
VL - 12
IS - 3
SP - 171
EP - 183
%@ 1869-1951
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1000044
Abstract: The artificial endocrine system (AES) is a new branch of natural computing which uses ideas and takes inspiration from the information processing mechanisms contained in the mammalian endocrine system. It is a fast growing research field in which a variety of new theoretical models and technical methods have been studied for dealing with complex and significant problems. An overview of some recent advances in AES modeling and its applications is provided in this paper, based on the major and latest works. This review covers theoretical modeling, combinations of algorithms, and typical application fields. A number of challenges that can be undertaken to help move the field forward are discussed according to the current state of the AES approach.
[1]Avila-Garcia, O., Canamero, L., 2004. Using Hormonal Feedback to Modulate Action Selection in a Competitive Scenario. From Animals to Animats 8: Proc. Eighth Int. Conf. on Simulation of Adaptive Behavior, p.243-252.
[2]Avila-Garcia, O., Canamero, L., 2005. Hormonal Modulation of Perception in Motivation-Based Action Selection Architectures. AISB Symp., p.9-16.
[3]Balasubramaniam, S., Botvich, D., Donnelly, W., Strassner, J., 2007. A Biologically Inspired Policy Based Management System for Survivability in Autonomic Networks. Fourth Int. Conf. on Broadband Communications, Networks and Systems, p.160-168.
[4]Besedovsky, H.O., Del Rey, A., 1996. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr. Rev., 17(1):64-102.
[5]Besedovsky, H.O., Sorkin, E., 1977. Network of immune-neuroendocrine interactions. Clin. Exp. Immunol., 27(1):1-12.
[6]Besedovsky, H.O., Del Rey, A.E., Sorkin, E., 1985. Immune-neuroendocrine interactions. J. Immunol., 135(Suppl 2):750-754.
[7]Brinkschulte, U., von Renteln, A., 2009. Analyzing the Behavior of an Artificial Hormone System for Task Allocation. Sixth Int. Conf. on Autonomic and Trusted Computing, p.47-61.
[8]Brinkschulte, U., Pacher, M., von Renteln, A., 2007. Towards an artificial hormone system for self-organizing real-time task allocation. LNCS, 4761:339-347.
[9]Brinkschulte, U., Pacher, M., von Renteln, A., 2008. An Artificial Hormone System for Self-organizing Real-time Task Allocation in Organic Middleware. In: Wurtz, R.P. (Ed.), Understanding Complex Systems: Organic Computing. Springer-Verlag, Berlin, p.261-283.
[10]Brooks, R.A., 1991. Integrated systems based on behaviors. ACM SIGART Bull., 2(4):46-50.
[11]Castano, A., Shen, W.M., Will, P., 2000. CONRO: towards deployable robots with inter-robots metamorphic capabilities. Auton. Rob., 8(3):309-324.
[12]Castano, A., Behar, A., Will, P., 2002. The CONRO modules for reconfigurable robots. IEEE/ASME Trans. Mech., 7(4):403-409.
[13]Chen, D.B., Zhao, C.X., 2007. Particle swarm optimization based on endocrine regulation mechanism. Control Appl., 24(6):1005-1009 (in Chinese).
[14]Chen, D.B., Zou, F., 2009. A Multi-objective Endocrine PSO Algorithm. First Int. Conf. on Information Science and Engineering, p.3567-3570.
[15]Danziger, L., Elmergreen, G.L., 1957. Mathematical models of endocrine systems. Bull. Math. Biophys., 19(1):9-18.
[16]Dasgupta, D., 1998. Artificial Immune Systems and Their Applications. Springer-Verlag, Berlin.
[17]Dasgupta, D., Nino, L.F., 2008. Immunological Computation: Theory and Applications. Auerbach Publications, Boca Raton, USA.
[18]de Castro, L.N., Timmis, J., 2002. Artificial Immune Systems: A New Computational Intelligence Approach. Springer-Verlag, Berlin.
[19]de Castro, L.N., von Zuben, F.J., 2004. Recent Developments in Biologically Inspired Computing. Idea Group Publishing, Hershey, USA.
[20]Ding, Y.S., Sun, H.B., Hao, K.R., 2007. A bio-inspired emergent system for intelligent Web service composition and management. Knowl.-Based Syst., 20(5):457-465.
[21]Dong, D.Y., You, H.F., Zhang, Y.P., Wang, X.F., 2010. A Hormone-Based Clustering Algorithm in Wireless Sensor Networks. Second Int. Conf. on Computer Engineering and Technology, p.555-559.
[22]El Sharkawi, M.A., Mori, H., Niebur, D., Pao, Y.H., 2000. Overview of Artificial Neural Networks. IEEE, New York, USA.
[23]Farhy, L.S., 2004. Modeling of oscillations of endocrine networks with feedback. Methods Enzymol., 384(1):54-81.
[24]Farhy, L.S., Straume, M., Johnson, M.L., Kovatchev, B., Veldhuis, J.D., 2001. A construct of interactive feedback control of the GH axis in the male. Am. J. Phys. Reg. Integr. Compar. Phys., 281(1):R38-R51.
[25]Felig, P., Frohman, L.A., 2001. Endocrinology and Metabolism (4th Ed.). McGraw-Hill Professional, New York, USA.
[26]Fogel, D.B., 2005. Evolutionary Computation—Toward a New Philosophy of Machine Intelligence (3rd Ed.). Wiley-IEEE Press, New York, USA.
[27]Graupe, D., 2007. Principles of Artificial Neural Networks. World Scientific Publishing Company, Singapore.
[28]Greensted, A.J., Tyrrell, A.M., 2003. Fault Tolerance via Endocrinologic Based Communication for Multiprocessor Systems. Fifth Int. Conf. on Evolvable Systems: from Biology to Hardware, p.24-34.
[29]Greensted, A.J., Tyrrell, A.M., 2004. An Endocrinologic-Inspired Hardware Implementation of a Multicellular System. Proc. NASA/DOD Conf. on Evolution Hardware, p.245-252.
[30]Greensted, A.J., Tyrrell, A.M., 2005. Implementation Results for a Fault-Tolerant Multicellular Architecture Inspired by Endocrine Communication. Proc. NASA/DOD Conf. on Evolution Hardware, p.253-261.
[31]Guo, Z.W., 2009. Formal Study of Neuroendocrine Complex System. MS Thesis, Yangzhou University, Yangzhou, China (in Chinese).
[32]Heylighen, F., Gershenson, C., Staab, S., Flake, G.W., Pennock, D.M., Fain, D.C., de Roure, D., Aberer, K., Shen, W.M., Dousse, O., et al., 2003. Neurons, viscose fluids, freshwater polyp hydra-and self-organizing information systems. IEEE Intell. Syst., 18(4):72-86.
[33]Hou, F.L., Shen, W.M., 2006a. Mathematical Foundation for Hormone-Inspired Control for Self-reconfigurable Robotic Systems. IEEE Int. Conf. on Robotics and Automation, p.1477-1482.
[34]Hou, F.L., Shen, W.M., 2006b. Hormone-Inspired Adaptive Distributed Synchronization of Reconfigurable Robots. Ninth Int. Conf. Intelligent and Autonomous Systems, p.455-462.
[35]Huang, G.R., 2003. Research on Artificial Endocrine Models and Its Applications. PhD Thesis, University of Science and Technology of China, Hefei, China (in Chinese).
[36]Huang, G.R., Cao, X.B., Xu, M., Wang, X.F., 2004. Self-organization algorithm of behaviors based on endocrine regulation mechanism. Acta Autom. Sin., 30(3):460-465 (in Chinese).
[37]Ihara, H., Mori, K., 1984. Autonomous decentralized computer control systems. IEEE Comput., 17(8):57-66.
[38]Jiang, T.X., Widelitz, R.B., Shen, W.M., Will, P., Wu, D.Y., Lin, C.M., Jung, H.S., Chuong, C.M., 2004. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models. Int. J. Dev. Biol., 48(2-3):117-135.
[39]Keenan, D.M., Lieinio, J., Veldhuis, J.D., 2001. A feedback-controlled ensemble model of the stress-responsive hypothalamo-pituitary-adrenal axis. PNAS, 98(7):4028-4033.
[40]Kravitz, E.A., 1988. Hormonal control of behavior: amines and the biasing of behavioral output in lobsters. Science, 241(4874):1775-1781.
[41]Krivokon, M., Will, P., Shen, W.M., 2005. Hormone-Inspired Distributed Control of Self-reconfiguration. IEEE Int. Conf. on Networking, Sensing and Control, p.514-519.
[42]Kyrylov, V., Severyanova, L.A., Vieira, A., 2005. Modeling robust oscillatory behavior of the hypothalamic-pituitary adrenal axis. IEEE Trans. Biomed. Eng., 52(12):1977-1983.
[43]Laketic, D., Tufte, G., Haddow, P.C., 2009. Stochastic Adaptation to Environmental Changes Supported by Endocrine System Principles. Proc. NASA/ESA Conf. on Adaptive Hardware and Systems, p.215-222.
[44]Li, G.Q., Liu, B.Z., Liu, Y.W., 1995. A dynamical model of the pulsatile secretion of the hypothalamo-pituitary-thyroid axis. Biosystems, 35(1):83-92.
[45]Li, X., Wang, X.F., Lei, Y., You, H.F., 2010. A Self-organized Algorithm Based on Digital Hormone. Third Int. Conf. on Advanced Computer Theory and Engineering, p.398-402.
[46]Liang, J.W., You, H.F., Wang, X.F., 2010. A Hormone-Modulated Emotional Model. Second Int. Conf. on Computer Engineering and Technology, p.537-541.
[47]Liao, E.Y., Mou, Z.H., 2007. Endocrinology (2nd Ed.). People’s Medical Publishing House, Beijing, China (in Chinese).
[48]Liu, B., 2006. Bio-network-Based Intelligent Control Systems and Their Applications. PhD Thesis, Donghua University, Shanghai, China (in Chinese).
[49]Liu, B., Ding, Y.S., 2006. A two-level controller based on the modulation principle of testosterone release. J. Shanghai Jiao Tong Univ., 40(5):822-824 (in Chinese).
[50]Liu, B., Han, H., Ding, Y.S., 2005a. A Decoupling Control Based on the Bi-regulation Principle of Growth Hormone. ICSC Congress on Computational Intelligence: Methods and Applications, p.1-4.
[51]Liu, B., Ren, L.H., Ding, Y.S., 2005b. A Novel Intelligent Controller Based on Modulation of Neuroendocrine System. Int. Symp. on Neural Network, p.119-124.
[52]Liu, B., Ding, Y.S., Wang, J.H., 2006a. An Intelligent Controller Inspired from Neuroendocrine-Immune System. Int. Conf. on Intelligent Systems and Knowledge Engineering, p.31-35.
[53]Liu, B., Zhang, Z.W., Ding, Y.S., 2006b. Decoupling control based on bi-directional regulation principle of growth hormone. J. Southeast Univ. (Nat. Sci. Ed.), 36(Suppl 1):5-8 (in Chinese).
[54]Liu, B., Ding, Y.S., Wang, J.H., 2008. Nonlinear optimized intelligent controller based on modulation of NEI system. Control Dec., 23(10):1159-1162 (in Chinese).
[55]Liu, B., Ding, Y.S., Wang, J.H., 2009. Intelligent Network Control System Inspired from Neuroendocrine-Immune System. Sixth Int. Conf. on Fuzzy Systems and Knowledge Discovery, p.136-140.
[56]Liu, Y.W., Hu, Z.H., Peng, J.H., Liu, B.Z., 1999. A dynamical model for the pulsatile secretion of the hypothalamo-pituitary-adrenal axis. Math. Comput. Model., 29(4):103-110.
[57]Mendao, M., 2007. A Neuro-Endocrine Control Architecture Applied to Mobile Robotics. PhD Thesis, University of Kent, Canterbury, UK.
[58]Miyamoto, S., Mori, K., Ihara, H., 1984. Autonomous decentralized control and its application to the rapid transit system. Comput. Ind., 5(2):115-124.
[59]Moioli, R.C., Vargas, P.A., von Zuben, F.J., Husbands, P., 2008a. Evolving an Artificial Homeostatic System. Nineteenth Brazilian Symp. on Artificial Intelligence, p.278-288.
[60]Moioli, R.C., Vargas, P.A., von Zuben, F.J., Husbands, P., 2008b. Towards the Evolution of an Artificial Homeostatic System. IEEE Congress on Evolutionary Computation, p.4023-4030.
[61]Moioli, R.C., Vargas, P.A., Husbands, P., 2009. A Multiple Hormone Approach to the Homeostatic Control of Conflicting Behaviours in an Autonomous Mobile Robot. IEEE Congress on Evolutionary Computation, p.47-54.
[62]Mori, K., 2001. Autonomous Decentralized System Technologies and Their Application to Train Transport Operation System. In: Winter, V.L., Bhattacharya, S. (Eds.), High Integrity Software. Kluwer Academic Publishers, Norwell, USA, p.89-111.
[63]Neal, M., Timmis, J., 2003. Timidity: a useful emotional mechanism for robot control? Informatica, 27(4):197-204.
[64]Neal, M., Timmis, J., 2005. Once More unto the Breach: Towards Artificial Homeostasis? In: de Castro, L.N., von Zuben, F.J. (Eds.), Recent Development in Biologically Inspired Computing. Idea Group Publishing, Hershey, USA, p.340-366.
[65]Ogata, T., Sugano, S., 1999. Emotional Communication Between Humans and the Autonomous Robot Which Has the Emotion Model. Proc. IEEE Int. Conf. on Robotics and Automation, p.3177-3182.
[66]Peng, H., Li, Y., Wang, L., Shen, L.C., 2008. Hormone-Inspired Cooperative Control for Multiple UAVS Wide Area Search. Int. Conf. on Intelligent Computing, p.808-816.
[67]Rabunal, J.R., Dorrado, J., 2005. Artificial Neural Networks in Real-Life Applications. Idea Group Publishing, Hershey, USA.
[68]Salemi, B., Shen, W.M., Will, P., 2001. Hormone-Controlled Metamorphic Robots. IEEE Int. Conf. on Robotics and Automation, p.4194-4199.
[69]Savino, W., Dardenne, M., 1995. Immune-neuroendocrine interactions. Immunol. Today, 16(7):318-322.
[70]Shen, W.M., Lu, Y.M., Will, P., 2000a. Hormone-Based Control for Self-reconfigurable Robots. Proc. 4th Int. Conf. on Autonomous Agents, p.1-8.
[71]Shen, W.M., Salemi, B., Will, P., 2000b. Hormones for Self-reconfigurable Robots. Sixth Int. Conf. on Intelligent Autonomous Systems, p.918-925.
[72]Shen, W.M., Chuong, C.M., Will, P., 2002a. Digital Hormone Model for Self-organization. Eighth Int. Conf. on Artificial Life, p.116-120.
[73]Shen, W.M., Chuong, C.M., Will, P., 2002b. Simulating Self-organization for Multi-robot Systems. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.2776-2781.
[74]Shen, W.M., Salemi, B., Will, P., 2002c. Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots. IEEE Trans. Robot. Autom., 18(5):700-712.
[75]Shen, W.M., Will, P., Galstyan, A., Chuong, C.M., 2004. Hormone-inspired self-organization and distributed control of robotic swarms. Auton. Robots, 17(1):93-105.
[76]Stradner, J., Hamann, H., Schmickl, T., Crailsheim, K., 2009. Analysis and Implementation of an Artificial Homeostatic Hormone System: a First Case Study in Robotic Hardware. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.595-600.
[77]Streichert, T., 2007. Self-adaptive Hardware/Software Reconfigurable Networks—Concepts, Methods, and Implementation. MS Thesis, University of Erlangen-Nuremberg, Nuremberg, Germany.
[78]Sugano, S., Ogata, T., 1996. Emergence of Mind in Robots for Human Interface—Research Methodology and Robot Modal. IEEE Int. Conf. on Robotics and Automation, p.1191-1198.
[79]Timmis, J., 2007. Artificial immune systems—today and tomorrow. Nat. Comput., 6(1):1-18.
[80]Timmis, J., Neal, M., Thorniley, J., 2009. An Adaptive Neuro-Endocrine System for Robotic Systems. IEEE Workshop on Robotic Intelligence in Informationally Structured Space, p.129-136.
[81]Trumler, W., Thiemann, T., Ungerer, T., 2006. An Artificial Hormone System for Self-organization of Networked Nodes. In: Pan, Y., Ramming, F.J., Schmeck, H., et al. (Eds.), IFIP International Federation for Information Processing: Biologically Inspired Cooperative Computing. Springer-Verlag, Berlin, p.85-94.
[82]Vargas, P.A., Moioli, R.C., de Castro, L.N., Timmis, J., Neal, M., von Zuben, F.J., 2005. Artificial Homeostatic System: a Novel Approach. Eighth European Conf. on Artificial Life, p.754-764.
[83]Vargas, P.A., Moioli, R.C., von Zuben, F.J., Husbands, P., 2009. Homeostasis and evolution together dealing with novelties and managing disruptions. Int. J. Intell. Comput. Cybern., 2(3):435-454.
[84]von Renteln, A., Brinkschulte, U., Weiss, M., 2008. Examinating Task Distribution by an Artificial Hormone System Based Middleware. Eleventh IEEE Symp. on Object Oriented Real-Time Distributed Computing, p.119-123.
[85]Walker, J., Wilson, M., 2007. Hormone-Inspired Control for Group Task Distribution. Proc. Towards Autonomous Robotic Systems, p.1-8.
[86]Walker, J., Wilson, M., 2008. A Performance Sensitive Hormone-Inspired System for Task Distribution Amongst Evolving Robots. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1293-1298.
[87]Weigent, D.A., Blalock, J.E., 1987. Interactions between the neuroendocrine and immune systems: common hormones and receptors. Immunol. Rev., 100(1):79-108.
[88]Weigent, D.A., Blalock, J.E., 1995. Associations between the neuroendocrine and immune systems. J. Leuk. Biol., 58(2):137-150.
[89]White, H., Gallant, A.R., Hornik, K., Stinchcombe, M., Wooldridge, J., 1992. Artificial Neural Networks: Approximation and Learning Theory. Blackwell Publishing, Oxford, UK.
[90]Wilder, R.L., 1995. Neuroendocrine-immune system interactions and autoimmunity. Ann. Rev. Immunol., 13(1):307-338.
[91]Xu, Q.Z., Wang, L., Wang, N., 2010. Lattice-based artificial endocrine system. LNCS, 6330:375-385.
[92]Yang, G., 1996. Physiology and Pathphysiology. Tianjin Scientific and Technical Publishers, Tianjin, China (in Chinese).
[93]Yao, X., Xu, Y., 2006. Recent advances in evolutionary computation. J. Comput. Sci. Technol., 21(1):1-18.
[94]Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S., 2007. Modular self-reconfigurable robot systems—challenges and opportunities for the future. IEEE Robot. Autom. Mag., 14(1):43-52.
[95]Zhang, J., Liu, S.S., Wang, X.F., Li, J.L., 2007. Hormone-Based Interacting Nodes Discovery with Low Latency and High Topology Consistency. Third Int. Conf. on Semantics, Knowledge and Grid, p.487-490.
[96]Zhang, Y.P., You, H.F., Wang, X.F., 2009. A Hormone Based Tracking Strategy for Wireless Sensor Network. IEEE Int. Conf. on Intelligent Computing and Intelligent Systems, p.104-108.
[97]Zheng, L.J., 2009. Study on the Chaotic Behaviour of the Nonlinear Dynamical Model for Human Internal Secretion. MS Thesis, Northeast Normal University, Changchun, China (in Chinese).
[98]Zhu, A., Yang, S.X., 2006. A neural network approach to dynamic task assignment of multirobots. IEEE Trans. Neur. Netw., 17(5):1278-1287.
Open peer comments: Debate/Discuss/Question/Opinion
<1>