CLC number: TP753
On-line Access: 2017-12-04
Received: 2016-03-05
Revision Accepted: 2016-09-04
Crosschecked: 2017-10-10
Cited: 0
Clicked: 6452
Chu He, Ya-ping Ye, Ling Tian, Guo-peng Yang, Dong Chen. A statistical distribution texton feature for synthetic aperture radar image classification[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(10): 1614-1623.
@article{title="A statistical distribution texton feature for synthetic aperture radar image classification",
author="Chu He, Ya-ping Ye, Ling Tian, Guo-peng Yang, Dong Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="10",
pages="1614-1623",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601051"
}
%0 Journal Article
%T A statistical distribution texton feature for synthetic aperture radar image classification
%A Chu He
%A Ya-ping Ye
%A Ling Tian
%A Guo-peng Yang
%A Dong Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 10
%P 1614-1623
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601051
TY - JOUR
T1 - A statistical distribution texton feature for synthetic aperture radar image classification
A1 - Chu He
A1 - Ya-ping Ye
A1 - Ling Tian
A1 - Guo-peng Yang
A1 - Dong Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 10
SP - 1614
EP - 1623
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601051
Abstract: We propose a novel statistical distribution texton (s-texton) feature for synthetic aperture radar (SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the importance of statistical distribution in SAR images, the s-texton feature is developed based on the idea that parameter estimation of the statistical distribution can replace the filtering operation in the traditional texture analysis of SAR images. In the process of extracting the s-texton feature, several strategies are adopted, including pre-processing, spatial gridding, parameter estimation, texton clustering, and histogram statistics. Experimental results on TerraSAR data demonstrate the effectiveness of the proposed s-texton feature.
[1]Benboudjema, D., Tupin, F., 2013. Markovian modelling and Fisher distribution for unsupervised classification of radar images. Int. J. Remote Sens., 34(22):8252-8266.
[2]Fukuda, S., 2004. Relating polarimetric SAR image texture to the scattering entropy. Proc. IEEE Int. Geoscience and Remote Sensing Symp., p.2475-2478.
[3]Gambini, J., Mejail, M.E., Jacobo-Berlles, J., et al., 2006. Feature extraction in speckled imagery using dynamic B-spline deformable contours under the $mathcalG^0$ model. Int. J. Remote Sens., 27(22):5037-5059.
[4]He, C., Ahonen, T., Pietikainen, M., 2008. A Bayesian local binary pattern texture descriptor. Proc. 19th Int. Conf. on Pattern Recognition, p.1-4.
[5]He, C., Li, S., Liao, Z., et al., 2013. Texture classification of PolSAR data based on sparse coding of wavelet polarization textons. IEEE Trans. Geosci. Remote Sens., 51(8):4576-4590.
[6]Krylov, V., Moser, G., Serpico, S.B., et al., 2008. Modeling the Statistics of High Resolution SAR Images. Research Report RR-6722, INRIA, France.
[7]Krylov, V., Moser, G., Serpico, S.B., et al., 2009. Dictionary-based probability density function estimation for high-resolution SAR data. Proc. IS&T/SPIE Electronic Imaging, p.72460S.1-72460S.12.
[8]Krylov, V.A., Moser, G., Serpico, S.B., et al., 2013. On the method of logarithmic cumulants for parametric probability density function estimation. IEEE Trans. Image Process., 22(10):3791-3806.
[9]Kuruoglu, E.E., Zerubia, J., 2000. Modelling SAR with a generalisation of the Rayleigh distribution. IEEE Trans. Image Process., 13(4):527-533.
[10]Kuruoglu, E.E., Zerubia, J., 2003. Skewed α-stable distributions for modelling textures. Patt. Recog. Lett., 24(1-3):339-348.
[11]Leung, T., Malik, J., 2001. Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vis., 43(1):29-44.
[12]Oliver, C.J., 1986. A model for non-Rayleigh scattering statistics. Opt. Acta: Int. J. Opt., 31(6):701-722.
[13]Oliver, C.J., Quegan, S., 2004. Understanding Synthetic Aperture Radar Images. SciTech Publishing, Stevenage.
[14]Schmid, C., 2001. Constructing models for content-based image retrieval. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.39-45.
[15]Silveira, M., Heleno, S., 2009. Separation between water and land in SAR images using region-based level sets. IEEE Geosci. Remote Sens. Lett., 6(3):471-475.
[16]Singh, J., Datcu, M., 2013. SAR image categorization with log cumulants of the fractional Fourier transform coefficients. IEEE Trans. Geosci. Remote Sens., 51(12): 5273-5282.
[17]Spigai, M., Tison, C., Souyris, J.C., 2011. Time-frequency analysis in high-resolution SAR imagery. IEEE Trans. Geosci. Remote Sens., 49(7):2699-2711.
[18]Varma, M., Zisserman, A., 2002. Classifying images of materials: achieving viewpoint and illumination independence. Proc. European Conf. on Computer Vision, p.255-271.
[19]Varma, M., Zisserman, A., 2005. A statistical approach to texture classification from single images. Int. J. Comput. Vis., 62(1-2):61-81.
[20]Voisin, A., Moser, G., Krylov, V.A., et al., 2010. Classification of very high resolution SAR images of urban areas by dictionary-based mixture models, copulas and Markov random fields using textural features. Proc. SPIE Remote Sensing, p.585-599.
[21]Xie, X., 2008. A review of recent advances in surface defect detection using texture analysis techniques. Electron. Lett. Comput. Vis. Image Anal., 7(3):1-22.
[22]Yonezawa, C., Watanabe, M., Saito, G., 2012. Polarimetric decomposition analysis of ALOS PALSAR observation data before and after a landslide event. Remote Sens., 4(8):2314-2328.
Open peer comments: Debate/Discuss/Question/Opinion
<1>