CLC number: V249.121
On-line Access: 2012-11-02
Received: 2012-03-26
Revision Accepted: 2012-07-31
Crosschecked: 2012-10-12
Cited: 3
Clicked: 7919
Mao-hua Zhang, Deng-ping Duan, Li Chen. Turning mechanism and composite control of stratospheric airships[J]. Journal of Zhejiang University Science C, 2012, 13(11): 859-865.
@article{title="Turning mechanism and composite control of stratospheric airships",
author="Mao-hua Zhang, Deng-ping Duan, Li Chen",
journal="Journal of Zhejiang University Science C",
volume="13",
number="11",
pages="859-865",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1200084"
}
%0 Journal Article
%T Turning mechanism and composite control of stratospheric airships
%A Mao-hua Zhang
%A Deng-ping Duan
%A Li Chen
%J Journal of Zhejiang University SCIENCE C
%V 13
%N 11
%P 859-865
%@ 1869-1951
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1200084
TY - JOUR
T1 - Turning mechanism and composite control of stratospheric airships
A1 - Mao-hua Zhang
A1 - Deng-ping Duan
A1 - Li Chen
J0 - Journal of Zhejiang University Science C
VL - 13
IS - 11
SP - 859
EP - 865
%@ 1869-1951
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1200084
Abstract: The parametric model of stratospheric airships is established in the body axes coordinate system. In this paper we study the turning mechanism of stratospheric airships including the generated forces and the key parameters for steady turning. We compare and analyze the different driven-characteristics between aerodynamic control surfaces and vectored thrust in turning. We design a composite control combining aerodynamic control surfaces and vectored thrust according to different dynamic pressure conditions, to achieve coordinated turning under high or low airspeed situations.
[1]Azinheira, J.R., de Paiva, E.C., Bueno, S.S., 2002. Influence of wind speed on airship dynamics. J. Guid. Control Dynam., 25(6):1116-1124.
[2]Ben-Asher, J.Z., 1995. Optimal trajectories for an unmanned air-vehicle in the horizontal plane. J. Aircraft, 32(3):677-680.
[3]Danowsky, B.P., Myers, T.T., 2008. Considerations in the Lateral Stability Characteristics of Airship Dynamics. AIAA Atmospheric Flight Mechanics Conf. and Exhibit.
[4]Gomes, S.B.V., 1990. An Investigation of the Flight Dynamics of Airships with Application to the YEZ-2A. PhD Thesis, College of Aeronautics, Cranfield University, UK.
[5]Heymann, V.I., Ben-Asher, J.Z., 1997. Aircraft trajectory optimization in the horizontal plane. J. Guid. Control Dynam., 20(6):1271-1274.
[6]Hima, S., Bestaoui, Y., 2006. Trim Trajectories Characterization for an Unmanned Autonomous Airship. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.137-142.
[7]Khoury, G.A., Gillett, J.D., 2000. Airship Technology. Cambridge University Press, Cambridge, UK.
[8]Kulczycki, E.A., Johnson, J.R., Bayard, D.S., Elfe, A., Quadrell, M.B., 2008. On the Development of Parameterized Linear Analytical Longitudinal Airship Models. AIAA Guidance, Navigation and Control Conf. and Exhibit, p.769-774.
[9]Lee, S., Bang, H., 2007. Three-dimensional ascent trajectory optimization for stratospheric airship platforms in the jet stream. J. Guid. Control Dynam., 30(5):1341-1351.
[10]Li, Y., 2008. Dynamics Modeling and Simulation of Flexible Airships. PhD Thesis, McGill University, Montreal, Canada.
[11]Li, Y., Nabon, M., 2007. Modeling and simulation of airship dynamics. J. Guid. Control Dynam., 30(6):1691-1700.
[12]Li, Y., Nahon, M., Sharf, I., 2009. Dynamics modelling and simulation of flexible airships. AIAA J., 47(3):592-605.
[13]Masahiko, O., Masaaki, S., 2006. Vehicle Proposal to Next Japanese Stratospheric LTA Developments. 6th AIAA Aviation Technology, Integration and Operations Conf.
[14]Miller, C.J., Sulliva, J., 2007. High Altitude Airship Simulation Control and Low Altitude Flight Demonstration. AIAA Infotech@Aerospace Conf. and Exhibit.
[15]Mueller, J.B., Zhao, Y., Garrard, W., 2009. Optimal ascent trajectories for stratospheric airships using wind energy. J. Guid. Control Dynam., 32(4):1232-1245.
[16]Nagabhushan, B.L., Pasha, R.P.K., 1992. Analysis of airship lateral maneuverability. J. Aircraft, 29(3):299-300.
[17]Nippress, K.R., Gomes, S.B.V., 1989. Estimation of the Flight Dynamic Characteristics of the YEZ-2A. 8th Lighter-Than-Air Systems Technology Conf.
[18]Peddiraju, P., Liesky, T., Nahon, M., 2009. Dynamics Modeling for an Unmanned, Unstable, Fin-Less Airship. 18th AIAA Lighter-Than-Air Systems Technology Conf.
[19]Shiau, J.K., Ma, D.M., Shie, J.R., Chiu, C.W., 2010. Optimal sizing and cruise speed determination for a solar-powered airplane. J. Aircraft, 47(2):622-629.
[20]Walden, R., 1994. Time-optimal turn to a heading: an analytic solution. J. Guid. Control Dynam., 17(4):873-875.
[21]Yang, G., Kapila, V., 2002. Optimal Path Planning for Unmanned Air Vehicles with Kinematic and Tactical Constraints. Proc. 41st IEEE Conf. on Decision and Control, p.1301-1306.
[22]Zhang, K.S., Han, Z.H., Song, B.F., 2010. Flight performance analysis of hybrid airship: revised analytical formulation. J. Aircraft, 47(4):1318-1330.
Open peer comments: Debate/Discuss/Question/Opinion
<1>