CLC number: TP13
On-line Access: 2014-04-10
Received: 2013-10-14
Revision Accepted: 2014-01-07
Crosschecked: 2014-03-17
Cited: 0
Clicked: 7237
Zhi-qiang Song, Hua-xiong Li, Chun-lin Chen, Xian-zhong Zhou, Feng Xu. Coordinated standoff tracking of moving targets using differential geometry[J]. Journal of Zhejiang University Science C, 2014, 15(4): 284-292.
@article{title="Coordinated standoff tracking of moving targets using differential geometry",
author="Zhi-qiang Song, Hua-xiong Li, Chun-lin Chen, Xian-zhong Zhou, Feng Xu",
journal="Journal of Zhejiang University Science C",
volume="15",
number="4",
pages="284-292",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300287"
}
%0 Journal Article
%T Coordinated standoff tracking of moving targets using differential geometry
%A Zhi-qiang Song
%A Hua-xiong Li
%A Chun-lin Chen
%A Xian-zhong Zhou
%A Feng Xu
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 4
%P 284-292
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300287
TY - JOUR
T1 - Coordinated standoff tracking of moving targets using differential geometry
A1 - Zhi-qiang Song
A1 - Hua-xiong Li
A1 - Chun-lin Chen
A1 - Xian-zhong Zhou
A1 - Feng Xu
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 4
SP - 284
EP - 292
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300287
Abstract: This research is concerned with coordinated standoff tracking, and a guidance law against a moving target is proposed by using differential geometry. We first present the geometry between the unmanned aircraft (UA) and the target to obtain the convergent solution of standoff tracking when the speed ratio of the UA to the target is larger than one. Then, the convergent solution is used to guide the UA onto the standoff tracking geometry. We propose an improved guidance law by adding a derivative term to the relevant algorithm. To keep the phase angle difference of multiple UAs, we add a second derivative term to the relevant control law. Simulations are done to demonstrate the feasibility and performance of the proposed approach. The proposed algorithm can achieve coordinated control of multiple UAs with its simplicity and stability in terms of the standoff distance and phase angle difference.
[1]Acevedo, J.J., Arrue, B.C., Maza, I., et al., 2013. Cooperative large area surveillance with a team of aerial mobile robots for long endurance missions. J. Intell. Robot. Syst., 70(1-4):329-345.
[2]Chen, H., Chang, K., Agate, C.S., 2013. UAV path planning with tangent-plus-Lyapunov vector field guidance and obstacle avoidance. IEEE Trans. Aerosp. Electron. Syst., 49(2):840-856.
[3]Forsmo, E.J., Grotli, E.I., Fossen, T.I., et al., 2013. Optimal search mission with unmanned aerial vehicles using mixed integer linear programming. Int. Conf. on Unmanned Aircraft Systems, p.253-259.
[4]Frew, E.W., Lawrence, D.A., Morris, S., 2008. Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields. J. Guid. Contr. Dynam., 31(2): 290-306.
[5]Griffiths, S.R., 2006. Remote Terrain Navigation for Unmanned Air Vehicles. MS Thesis, Brigham Young University, Utah, USA.
[6]Kim, S., Oh, H., Tsourdos, A., 2013. Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle. J. Guid. Contr. Dynam., 36(2):557-566.
[7]Lawrence, D.A., 2003. Lyapunov vector fields for UAV flock coordination. 2nd AIAA Unmanned Unlimited Conf., Workshop, and Exhibit, p.1-8.
[8]Lawrence, D.A., Frew, E.W., Pisano, W.J., 2008. Lyapunov vector fields for autonomous unmanned aircraft flight control. J. Guid. Contr. Dynam., 31(5):1220-1229.
[9]Li, Y., Ang, K.H., Chong, G.C.Y., 2006. PID control system analysis and design. IEEE Contr. Syst., 26(1):32-41.
[10]Lim, S., Kim, Y., Lee, D., et al., 2013. Standoff target tracking using a vector field for multiple unmanned aircrafts. J. Intell. Robot. Syst., 69(1-4):347-360.
[11]Nelson, D.R., Barber, D.B., McLain, T.W., et al., 2007. Vector field path following for miniature air vehicles. IEEE Trans. Robot., 23(3):519-529.
[12]Nigam, N., Bieniawski, S., Kroo, I., et al., 2012. Control of multiple UAVs for persistent surveillance: algorithm and flight test results. IEEE Trans. Contr. Syst. Technol., 20(5):1236-1251.
[13]Oh, H., Kim, S., Shin, H.S., et al., 2013. Rendezvous and standoff target tracking guidance using differential geometry. J. Intell. Robot. Syst., 69(1-4):389-405.
[14]Ping, J.T.K., Ling, A.E., Quan, T.J., et al., 2012. Generic unmanned aerial vehicle (UAV) for civilian application. IEEE Conf. on Sustainable Utilization and Development in Engineering and Technology, p.289-294.
[15]Prevost, C.G., Theriault, O., Desbiens, A., et al., 2009. Receding horizon model-based predictive control for dynamic target tracking: a comparative study. AIAA Guidance, Navigation, and Control Conf., p.1-9.
[16]Summers, T.H., Akella, M.R., Mears, M.J., 2009. Coordinated standoff tracking of moving targets: control laws and information architectures. J. Guid. Contr. Dynam., 32(1): 56-69.
[17]White, B.A., Zbikowski, R., Tsourdos, A., 2007. Direct intercept guidance using differential geometry concepts. IEEE Trans. Aerosp. Electron. Syst., 43(3):899-919.
[18]Wise, R.A., Rysdyk, R.T., 2006. UAV coordination for autonomous target tracking. Proc. AIAA Guidance, Navigation, and Control Conf., p.3210-3231.
[19]Zarea, M., Pognonec, G., Schmidt, C., et al., 2013. First steps in developing an automated aerial surveillance approach. J. Risk Res., 13(3-4):407-420.
Open peer comments: Debate/Discuss/Question/Opinion
<1>