CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-08-19
Cited: 0
Clicked: 7279
Gang Xu, Li-shan Deng, Wen-bing Ge, Kin-chuen Hui, Guo-zhao Wang, Yi-gang Wang. Quasi-angle-preserving mesh deformation using the least-squares approach[J]. Journal of Zhejiang University Science C, 2014, 15(9): 754-763.
@article{title="Quasi-angle-preserving mesh deformation using the least-squares approach",
author="Gang Xu, Li-shan Deng, Wen-bing Ge, Kin-chuen Hui, Guo-zhao Wang, Yi-gang Wang",
journal="Journal of Zhejiang University Science C",
volume="15",
number="9",
pages="754-763",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400103"
}
%0 Journal Article
%T Quasi-angle-preserving mesh deformation using the least-squares approach
%A Gang Xu
%A Li-shan Deng
%A Wen-bing Ge
%A Kin-chuen Hui
%A Guo-zhao Wang
%A Yi-gang Wang
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 9
%P 754-763
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400103
TY - JOUR
T1 - Quasi-angle-preserving mesh deformation using the least-squares approach
A1 - Gang Xu
A1 - Li-shan Deng
A1 - Wen-bing Ge
A1 - Kin-chuen Hui
A1 - Guo-zhao Wang
A1 - Yi-gang Wang
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 9
SP - 754
EP - 763
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400103
Abstract: We propose an angle-based mesh representation, which is invariant under translation, rotation, and uniform scaling, to encode the geometric details of a triangular mesh. Angle-based mesh representation consists of angle quantities defined on the mesh, from which the mesh can be reconstructed uniquely up to translation, rotation, and uniform scaling. The reconstruction process requires solving three sparse linear systems: the first system encodes the length of edges between vertices on the mesh, the second system encodes the relationship of local frames between two adjacent vertices on the mesh, and the third system defines the position of the vertices via the edge length and the local frames. From this angle-based mesh representation, we propose a quasi-angle-preserving mesh deformation system with the least-squares approach via handle translation, rotation, and uniform scaling. Several detail-preserving mesh editing examples are presented to demonstrate the effectiveness of the proposed method.
[1]Alexa, M., 2003. Differential coordinates for local mesh morphing and deformation. Vis. Comput., 19(2):105-114.
[2]Au, O., Tai, C., Liu, L., et al., 2006. Dual Laplacian editing for meshes. IEEE Trans. Visual. Comput. Graph., 12(3):386-395.
[3]Boier-Martin, I., Ronfard, R., Bernardini, F., 2004. Detail-preserving variational surface design with multiresolution constraints. Proc. Shape Modeling Int., p.119-128.
[4]Botsch, M., Kobbelt, L., 2004. An intuitive framework for real-time freeform modeling. SIGGRAPH, p.630-634.
[5]Chen, S.G., Wu, J.Y., 2004. Estimating normal vectors and curvatures by centroid weights. Comput. Aid. Geom. Des., 21(5):447-458.
[6]Coquillart, S., 1990. Extended free-form deformation: a sculpting tool for 3D geometric modeling. SIGGRAPH, p.187-196.
[7]Guskov, I., Sweldens, W., Schroder, P., 1999. Multiresolution signal processing for meshes. SIGGRAPH, p.325-334.
[8]Hsu, W.H., Hughes, J.F., Kaufman, H., 1992. Direct manipulation of free-form deformations. SIGGRAPH, p.177-184.
[9]Hu, J.W., Liu, L.G., Wang, G.Z., 2007. Dual Laplacian morphing for triangular meshes. Comput. Anim. Virt. Worlds, 18(4-5):271-277.
[10]Kobbelt, L., Campagna, S., Vorsatz, J., et al., 1998. Interactive multiresolution modeling on arbitrary meshes. SIGGRAPH, p.105-114.
[11]Lazarus, F., Coquillart, S., Jancne, P., 1994. Axial deformations: an intuitive deformation technique. Comput.-Aid. Des., 26(8):607-613.
[12]Lipman, Y., Sorkine, O., Cohen-Or, D., et al., 2004. Differential coordinates for interactive mesh editing. Proc. Shape Modeling Int., p.181-190.
[13]Lipman, Y., Sorkine, O., Levin, D., et al., 2005. Linear rotation-invariant coordinates for meshes. SIGGRAPH, p.479-487.
[14]Luke, E., Collins, E., Blades, E., 2012. A fast mesh deformation method using explicit interpolation. J. Comput. Phys., 231(2):586-601.
[15]MacCracken, R., Joy, K., 1996. Free-form deformations with lattices of arbitrary topology. SIGGRAPH, p.181-188.
[16]Nealen, A., Sorkine, O., Alexa, M., et al., 2005. A sketch-based interface for detail-preserving mesh editing. SIGGRAPH, p.1142-1147.
[17]Sederberg, T.W., Parry, S.R., 1986. Free-form deformation of solid geometric models. SIGGRAPH, p.151-160.
[18]Singh, K., Fiume, E., 1998. Wires: a geometric deformation technique. SIGGRAPH, p.405-414.
[19]Sorkine, O., Lipman, Y., Cohen-Or, D., et al., 2004. Laplacian surface editing. ACM SIGGRAPH/Eurographics on Geometry, p.179-188.
[20]Toledo, S., 2003. TAUCS: a Library of Sparse Linear Solvers, Version 2.2.
[21]Xu, G., Wang, G.Z., Chen, X.D., 2008. Free form deformation with rational DMS-spline volumes. J. Comput. Sci. Technol., 23(5):862-873.
[22]Xu, G., Hui, K.C., Ge, W.B., et al., 2013. Direct manipulation of free-form deformation using curve-pairs. Comput.-Aid. Des., 45(3):605-614.
[23]Yu, Y., Zhou, K., Xu, D., et al., 2005. Mesh editing with Poisson-based gradient field manipulation. SIGGRAPH, p.496-503.
[24]Zhou, K., Huang, J., Snyder, J., et al., 2004. Large mesh deformation using the volumetric graph Laplacian. SIGGRAPH, p.641-648.
[25]Zhou, X., Li, S., 2013. A new mesh deformation method based on disk relaxation algorithm with pre-displacement and post-smoothing. J. Comput. Phys., 235:199-215.
[26]Zorin, D., Schroder, P., Sweldens, W., 1997. Interactive multiresolution mesh editing. SIGGRAPH, p.259-268.
Open peer comments: Debate/Discuss/Question/Opinion
<1>