CLC number: TP391
On-line Access: 2013-07-05
Received: 2012-12-29
Revision Accepted: 2013-05-10
Crosschecked: 2013-06-06
Cited: 6
Clicked: 6621
Ying-mei Wei, Lai Kang, Bing Yang, Ling-da Wu. Applications of structure from motion: a survey[J]. Journal of Zhejiang University Science C, 2013, 14(7): 486-494.
@article{title="Applications of structure from motion: a survey",
author="Ying-mei Wei, Lai Kang, Bing Yang, Ling-da Wu",
journal="Journal of Zhejiang University Science C",
volume="14",
number="7",
pages="486-494",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.CIDE1302"
}
%0 Journal Article
%T Applications of structure from motion: a survey
%A Ying-mei Wei
%A Lai Kang
%A Bing Yang
%A Ling-da Wu
%J Journal of Zhejiang University SCIENCE C
%V 14
%N 7
%P 486-494
%@ 1869-1951
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.CIDE1302
TY - JOUR
T1 - Applications of structure from motion: a survey
A1 - Ying-mei Wei
A1 - Lai Kang
A1 - Bing Yang
A1 - Ling-da Wu
J0 - Journal of Zhejiang University Science C
VL - 14
IS - 7
SP - 486
EP - 494
%@ 1869-1951
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.CIDE1302
Abstract: structure from motion (SfM) has been an active research area in computer vision for decades and numerous practical applications are benefiting from this research. While no previous work has tried to summarize the applications appearing in the literature, this paper deals with a comprehensive overview of recent applications of SfM by classifying them into 10 categories, namely augmented reality, autonomous navigation/guidance, motion capture, hand-eye calibration, image/video processing, image-based 3D modeling, remote sensing, image organization/browsing, segmentation and recognition, and military applications. The goal is to provide insights for researchers to position their work more appropriately in the context of existing techniques, and to perceive both new applications and relevant research problems.
[1]Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R., 2009. Building Rome in a Day. Proc. IEEE Int. Conf. on Computer Vision, p.72-79.
[2]Agarwal, S., Snavely, N., Seitz, S.M., Szeliski, R., 2010. Bundle Adjustment in the Large. Proc. European Conf. on Computer Vision: Part II, p.29-42.
[3]Andreff, N., Horaud, R., Espiau, B., 2001. Robot hand-eye calibration using structure-from-motion. Int. J. Robot. Res., 20(3):228-248.
[4]Bao, S.Y., Bagra, M., Chao, Y.W., Savarese, S., 2012. Semantic Structure from Motion with Points, Regions, and Objects. CVPR, p.2703-2710.
[5]Bhat, P., Zitnick, C.L., Snavely, N., Agarwala, A., Agrawala, M., Cohen, M., Curless, B., Kang, S.B., 2007. Using Photographs to Enhance Videos of a Static Scene. Eurographics Symp. on Rendering, p.327-338.
[6]Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R., 2008. Segmentation and Recognition Using Structure from Motion Point Clouds. Proc. 10th European Conf. on Computer Vision: Part I, p.44-57.
[7]Brostow, G.J., Fauqueur, J., Cipolla, R., 2009. Semantic object classes in video: a high definition ground truth database. Pattern Recogn. Lett., 30(2):88-97.
[8]Cornelis, K., Pollefeys, M., Gool, L.V., 2001. Tracking Based Structure and Motion Recovery for Augmented Video Productions. Proc. ACM Symp. on Virtual Reality Software and Technology, p.17-24.
[9]Frahm, J.M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.H., Dunn, E., Clipp, B., Lazebnik, S., et al., 2010. Building Rome on a Cloudless Day. Proc. 11th European Conf. on Computer Vision: Part IV, p.368-381.
[10]Hartley, R., Zisserman, A., 2004. Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge, UK.
[11]Hasler, N., Rosenhahn, B., Thormahlen, T., Wand, M., Gall, J., Seidel, H.P., 2009. Markerless Motion Capture with Unsynchronized Moving Cameras. CVPR, p.224-231.
[12]Helala, M.A., Zarrabeitia, L.A., Qureshi, F.Z., 2012. Mosaic of Near Ground UAV Videos under Parallax Effects. Proc. 6th ACM/IEEE Int. Conf. on Distributed Smart Cameras, p.1-6.
[13]Heller, J., Havlena, M., Sugimoto, A., Pajdla, T., 2011. Structure-from-Motion Based Hand-Eye Calibration Using l∞ Minimization. CVPR, p.3497-3503.
[14]Irschara, A., Zach, C., Frahm, J.M., Bischof, H., 2009. From Structure-from-Motion Point Clouds to Fast Location Recognition. CVPR, p.2599-2606.
[15]Jackson, N.L., 2008. Precision Reconstruction Based Tracking for Autonomous Synthetic Battlefield Displays Acquired from Unmanned Aerial Vehicle Video Streams. Dissertation, Morgan State University, Baltimore, Maryland, United States.
[16]Kurz, C., Thormahlen, T., Seidel, H.P., 2009. Scene-Aware Video Stabilization by Visual Fixation. Proc. Conf. for Visual Media Production, p.1-6.
[17]Li, Y., Snavely, N., Huttenlocher, D., 2010. Location Recognition Using Prioritized Feature Matching. Proc. 11th European Conf. on Computer Vision: Part II, p.791-804.
[18]Li, Y., Snavely, N., Huttenlocher, D., Fua, P., 2012. Worldwide Pose Estimation Using 3D Point Clouds. Proc. 12th European Conf. on Computer Vision: Part I, p.15-29.
[19]Liu, F., Gleicher, M., Jin, H., Agarwala, A., 2009. Content-preserving warps for 3D video stabilization. ACM Trans. Graph., 28(3), Article 44, p.1-9.
[20]Longuet-Higgins, H.C., 1981. A computer algorithm for reconstructing a scene from two projections. Nature, 293(5828):133-135.
[21]Lourakis, M.I.A., Argyros, A.A., 2009. SBA: a software package for generic sparse bundle adjustment. ACM Trans. Math. Software, 36(1):1-30.
[22]Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 60(2):91-110.
[23]Manferdini, A.M., 2012. A Methodology for the Promotion of Cultural Heritage Sites Through the Use of Low-Cost Technologies and Procedures. Proc. 17th Int. Conf. on 3D Web Technology, p.180.
[24]Manweiler, J., Jain, P., Choudhury, R.R., 2012. Satellites in Our Pockets: an Object Positioning System Using Smartphones. Proc. 10th Int. Conf. on Mobile Systems, Applications, and Services, p.211-224.
[25]Mikolajczyk, K., Schmid, C., 2005. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell., 27(10):1615-1630.
[26]Mooser, J., You, S., Neumann, U., Wang, Q., 2009. Applying Robust Structure from Motion to Markerless Augmented Reality. Workshop on Applications of Computer Vision, p.1-8.
[27]Moslah, O., Guitteny, V., Couvet, S., 2009. Geo-referencing Uncalibrated Photographs Using Aerial Images and 3D Urban Models. CORESA, p.1-5.
[28]Muja, M., Lowe, D.G., 2009. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration. Proc. 4th Int. Conf. on Computer Vision Theory and Applications, p.331-340.
[29]Musialski, P., Wonka, P., Aliaga, D.G., Wimmer, M., van Gool, L., Purgathofer, W., 2012. A Survey of Urban Reconstruction. Eurographics State of the Art Reports, p.1-28.
[30]Nassar, K., Aly, E.A., Jung, Y., 2011. Structure-from-Motion for Earthwork Planning. Proc. 28th ISARC, p.310-316.
[31]Nicosevici, T., Garcia, R., 2008. Online Robust 3D Mapping Using Structure from Motion Cues. OCEANS, p.1-7.
[32]Niethammer, U., Rothmund, S., Schwaderer, U., Zeman, J., Joswig, M., 2011. Open Source Image-Processing Tools for Low-Cost UAV-Based Landslide Investigations. Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, p.1-6.
[33]Nilosek, D., Walli, K., 2009. Aerial Scene Synthesis from Images. SIGGRAPH Posters, Article 65.
[34]Oliensis, J., 1999. A multi-frame structure-from-motion algorithm under perspective projection. Int. J. Comput. Vis., 34(2-3):163-192.
[35]Pollefeys, M., Gool, L.V., Vergauwen, M., Cornelis, K., Verbiest, F., Tops, J., 2001a. Image-Based 3D Acquisition of Archaeological Heritage and Applications. Proc. Conf. on Virtual Reality, Archeology, and Cultural Heritage, p.255-262.
[36]Pollefeys, M., Vergauwen, M., Cornelis, K., Verbiest, F., Schouteden, J., Tops, J., Gool, L.V., 2001b. 3D Acquisition of Archaeological Heritage from Images. CIPA Conf., Int. Archive of Photogrammetry and Remote Sensing, p.1-8.
[37]Pupilli, M., Calway, A., 2002. Real-Time Structure from Motion for Augmented Reality. University of Bristol, Bristol, UK.
[38]Pylvanainen, T., Berclaz, J., Korah, T., Hedau, V., Aanjaneya, M., Grzeszczuk, R., 2012. 3D City Modeling from Street-Level Data for Augmented Reality Applications. 2nd Int. Conf. on 3D Imaging, Modeling, Processing, Visualization and Transmission, p.238-245.
[39]Remondino, F., El-Hakim, S., 2006. Image-based 3D modelling: a review. Photogrammetr. Rec., 21(115):269-291.
[40]Royer, E., Lhuillier, M., Dhome, M., Lavest, J.M., 2007. Monocular vision for mobile robot localization and autonomous navigation. Int. J. Comput. Vis., 74(3):237-260.
[41]Sato, T., Iketani, A., Ikeda, S., Kanbara, M., Nakajima, N., Yokoya, N., 2006. Video Mosaicing for Curved Documents by Structure from Motion. ACM SIGGRAPH Sketches.
[42]Schaffalitzky, F., Zisserman, A., 2002. Multi-view Matching for Unordered Image Sets, or “How Do I Organize My Holiday Snaps?''. Proc. 7th European Conf. on Computer Vision: Part I, p.414-431.
[43]Schindler, G., Krishnamurthy, P., Dellaert, F., 2006. Line-Based Structure from Motion for Urban Environments. Proc. 3rd Int. Symp. on 3D Data Processing, Visualization, and Transmission, p.846-853.
[44]Schmidt, J., Vogt, F., Niemann, H., 2005. Calibration Free HandEye Calibration: a Structure from Motion Approach. Proc. 27th DAGM Conf. on Pattern Recognition, p.67-74.
[45]Schweighofer, G., Segvic, S., Pinz, A., 2008. Online/Realtime Structure and Motion for General Camera Models. IEEE Workshop on Applications of Computer Vision, p.1-6.
[46]Shim, M., Yilma, S., Bonner, K., 2008. A robust real-time structure from motion for situational awareness and RSTA. SPIE, 6962:1-11.
[47]Shiratori, T., Park, H.S., Sigal, L., Sheikh, Y., Hodgins, J.K., 2011. Motion capture from body-mounted cameras. ACM Trans. Graph., 30(4), Article 31, p.1-10.
[48]Sinha, S.N., Steedly, D., Szeliski, R., Agrawala, M., Pollefeys, M., 2008. Interactive 3D architectural modeling from unordered photo collections. ACM Trans. Graph., 27(5), Article 159, p.1-10.
[49]Snavely, N., Seitz, S.M., Szeliski, R., 2006. Photo tourism: exploring photo collections in 3D. ACM Trans. Graph., 25(3):835-846.
[50]Snavely, N., Simon, I., Goesele, M., Szeliski, R., Seitz, S.M., 2010. Scene reconstruction and visualization from community photo collections. Proc. IEEE, 98(8):1370-1390.
[51]Spetsakis, M., Aloimonos, J., 1991. A multi-frame approach to visual motion perception. Int. J. Comput. Vis., 6(3):245-255.
[52]Srinivasan, S., Chellappa, R., 1999. Fast Structure from Motion Recovery Applied to 3D Image Stabilization. Proc. IEEE Int. Conf. on the Acoustics, Speech, and Signal, p.3357-3360.
[53]Streckel, B., Evers-Senne, J.F., Koch, R., 2005. Lens Model Selection for a Markerless AR Tracking System. Proc. 4th IEEE and ACM Int. Symp. on Mixed and Augmented Reality, p.130-133.
[54]Strucl, D.W., Quartisch, M., 2001. A Structure Based Mosaicking Approach for Aerial Images from Low Altitude of Non-planar Scenes. Proc. 16th Computer Vision Winter Workshop, p.51-58.
[55]Sturgess, P., Alahari, K., Ladicky, L., Torr, P.H.S., 2009. Combining Appearance and Structure from Motion Features for Road Scene Understanding. Proc. British Machine Vision Conf., p.1-11.
[56]Szeliski, R., 2010. Computer Vision: Algorithms and Applications. Springer, New York.
[57]Szeliski, R., Kang, S.B., 1994. Recovering 3D shape and motion from image streams using nonlinear least squares. J. Vis. Commun. Image Represent., 5(1):10-28.
[58]Tomasi, C., 1992. Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vis., 9(2):137-154.
[59]Triggs, B., Mclauchlan, P., Hartley, R., Fitzgibbon, A., 2000. Bundle adjustment: a modern synthesis. LNCS, 1883:298-375.
[60]Turner, D., Lucieer, A., Watson, C., 2012. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, %based on structure from motion (SfM) point clouds. Remote Sens., 4(12):1392-1410.
[61]Tuytelaars, T., Mikolajczyk, K., 2007. Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis., 3(3):177-280.
[62]Wang, C., 1992. Extrinsic calibration of a vision sensor mounted on a robot. IEEE Trans. Robot. Autom., 8(2):161-175.
[63]Wang, Y., Olano, M., 2011. A Framework for GPU 3D Model Reconstruction Using Structure-from-Motion. ACM SIGGRAPH Posters, p.27.
[64]Wu, C., Agarwal, S., Curless, B., Seitz, S.M., 2011. Multicore Bundle Adjustment. CVPR, p.3057-3064.
[65]Xiao, J., Fang, T., Tan, P., Zhao, P., Ofek, E., Quan, L., 2008. Image-based facade modeling. ACM Trans. Graph., 27(5), Article 161, p.1-10.
[66]Yang, M.D., Chao, C.F., Huang, K.S., Lu, L.Y., Chen, Y.P., 2013. Image-based 3D scene reconstruction and exploration in augmented reality. Autom. Construct., 33:48-60.
[67]Yao, A., Calway, A., 2002. Robust Estimation of 3-D Camera Motion for Uncalibrated Augmented Reality. University of Bristol, Bristol, UK.
[68]Zelek, J.S., Fazl-Ersi, E., Asmar, D.C., Fakih, A.H., 2010. Computer Vision Geo-location, Awareness & Detail. Proc. 1st Int. Conf. and Exhibition on Computing for Geospatial Research & Application.
[69]Zhang, G., Hua, W., Qin, X., Shao, Y., Bao, H., 2009. Video stabilization based on a 3D perspective camera model. Vis. Comput., 25(11):997-1008.
Open peer comments: Debate/Discuss/Question/Opinion
<1>