CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-05-06
Cited: 3
Clicked: 8141
Zhao Wang, Zhong-xuan Luo, Jie-lin Zhang, Emil Saucan. ARAP++: an extension of the local/global approach to mesh parameterization[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500184 @article{title="ARAP++: an extension of the local/global approach to mesh parameterization", %0 Journal Article TY - JOUR
Abstract: This paper proposes an extended local/global parameterization (ARAP++) method for single-boundary and multi-boundary triangular meshes. It suggests two main extensions in comparison with ARAP. 1) The current ARAP scheme combines a local mapping from a 3D triangle to the plane with a global ‘stitch’ operation for individual triangles, while the proposed ARAP++ adopts a global operation that stitches the 1-ring patches together; 2) Similar to energy minimization of mesh parameterization, the scheme of this paper is based on optimization of the spring energy, which can cover the ARAP approach (based on the optimization of Dirichlet energy) as a special case. The main interesting point is that each triangle is looked upon 3 different view points: those of the 3 vertices. An interesting property is that each angle can therefore be corrected is order to sum to Pi around each vertex.
ARAP++:一类推广的局部/全局参数化算法创新点:首先通过优化弹性能量函数推导得到了一类局部/全局线性迭代格式,并阐明该方法与ARAP方法之间的联系。针对保面积的情况,提出了一种快速得到最佳拟合矩阵的方法。最后为提高算法的鲁棒性,对ARAP++方法进行改进,使其可以很好的处理高曲率网格的展平,尽可能防止参数化结果的网格重叠。 方法:ARAP++是一种线性迭代的参数化方法。本文首先将原始网格初始化展平到平面上,然后对初始化网格进行迭代计算。其中每次迭代主要分为两个阶段:(1)局部优化;(2)整体求解。实验证明本文算法收敛迅速,并且可以得到很好的纹理映射和重网格化结果。 结论:本文提出了一种自由边界的网格参数化方法,该方法可以使用不同的凸组合权值得到相应性质的参数化结果(图10),也可以通过改变Jacobian矩阵的奇异值来达到保角、保面积、保刚性的目的(图3)。本文方法针对不同的网格模型也可以通过拉伸算子来协调参数化后角度、面积以及拉伸扭曲之间的关系(图9),从而使得该方法在纹理映射(图13、14)和重网格化(图15)等应用中得到较好的视觉效果。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Aigerman, N., Lipman, Y., 2013. Injective and bounded distortion mappings in 3D. ACM Trans. Graph., 32(4), Article 106. ![]() [2]Bouaziz, S., Deuss, M., Schwartzburg, Y., et al., 2012. Shape-up: shaping discrete geometry with projections. Comput. Graph. Forum, 31(5):1657-1667. ![]() [3]Chen, B.M., Gotsman, C., Bunin, G., 2008. Conformal flattening by curvature prescription and metric scaling. Comput. Graph. Forum, 27(2):449-458. ![]() [4]Chen, Z., Liu, L., Zhang, Z., et al., 2007. Surface paramete-rization via aligning optimal local flattening. Proc. Symp. on Solid and Physical Modeling, p.291-296. ![]() [5]Degener, P., Meseth, J., Klein, R., 2003. An adaptable surface parameterization method. Proc. 12th Int. Meshing Roundtable, p.227-237. ![]() [6]Desbrun, M., Meyer, M., Allize, P., 2002. Intrinsic parameterization of surface meshes. Comput. Graph. Forum, 21(2):209-218. ![]() [7]Eck, M., DeRose, T., Duchamp, T., et al., 1995. Multi-resolution analysis of arbitrary meshes. Proc. 22nd Annual Conf. on Computer Graphics and Interactive Techniques, p.173-182. ![]() [8]Floater, M.S., 1997. Parameterization and smooth approximation of surface triangulations. Comput. Aid. Geom. Des., 14(3):231-250. ![]() [9]Floater, M.S., 2003. Mean value coordinates. Comput. Aid. Geom. Des., 20(1):19-27. ![]() [10]Floater, M.S., Hormann, K., 2005. Surface parameterization: a tutorial and survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (Eds.), Advances in Multiresolution for Geometric Modelling, p.157-186. ![]() [11]Gortler, S., Gotsman, C., Thurston, D., 2006. Discrete one-forms on meshes and applications to 3D mesh parameterization. Comput. Aid. Geom. Des., 23(2):83-112. ![]() [12]Gower, J.C., Dijksterhuis, G.B., 2004. Procrustes Problems. Oxford University Press, Oxford. ![]() [13]Gu, X., Yau, S., 2002. Computing conformal structures of surfaces. Commun. Inform. Syst., 2(2):121-146. ![]() [14]Gu, X., Yau, S., 2003. Global conformal surface parameterization. Proc. Eurographics/ACM SIGGRAPH Symp. on Geometry Processing, p.127-137. ![]() [15]Haker, S., Angenent, S., Tannenbaum, A., et al., 2000. Conformal surface parameterization for texture mapping. IEEE Trans. Visual. Comput. Graph., 6(2):181-189. ![]() [16]Hoppe, H., DeRose, T., Duchamp, T., et al., 1993. Mesh optimization. Proc. 20th Annual Conf. on Computer Graphics and Interactive Techniques, p.19-26. ![]() [17]Hormann, K., Greiner, G., 2000a. MIPS: an efficient global parameterization method. Proc. Curve and Surface, p.153-162. ![]() [18]Hormann, K., Greiner, G., 2000b. Quadrilateral remeshing. Proc. Vision Modeling and Visualization, p.153-162. ![]() [19]Hormann, K., Greiner, G., Campagna, S., 1999. Hierarchical parameterization of triangulated surfaces. Proc. of Vision, Modeling and Visualization, p.219-226. ![]() [20]Hormann, K., Labsik, U., Greiner, G., 2001. Remeshing triangulated surfaces with optimal parameterizations. Comput.-Aid. Des., 33(11):779-788. ![]() [21]Hormann, K., Lévy, B., Sheffer, A., 2007. Mesh parameterization: theory and practice. Proc. SIGGRAPH, p.1-122. ![]() [22]Horn, R., Johnson, C., 1990. Norms for vectors and matrices. In: Matrix Analysis. Cambridge University Press, England. ![]() [23]Jacobson, A., Baran, I., Kavan, L., et al., 2012. Fast automatic skinning transformations. ACM Trans. Graph., 31(4), Article 77. ![]() [24]Jin, M., Kim, J., Luo, F., et al., 2008. Discrete surface Ricci flow. IEEE Trans. Visual. Comput. Graph., 14(5):1030-1043. ![]() [25]Kharevych, L., Springborn, B., Schröder, P., 2006. Discrete conformal mappings via circle patterns. ACM Trans. Graph., 25(2):412-438. ![]() [26]Lawson, L., 1977. Software for c1 surface interpolation. In: Mathematical Software III. Academic Press, New York. ![]() [27]Lee, Y., Kim, H., Lee, S., 2002. Mesh parameterization with a virtual boundary. Comput. Graph., 26(5):677-686. ![]() [28]Levi, Z., Zorin, D., 2014. Strict minimizers for geometric optimization. ACM Trans. Graph., 33(6), Article 185. ![]() [29]Lévy, B., Petitjean, S., Ray, N., et al., 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph., 21(3):362-371. ![]() [30]Lipman, Y., 2012. Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph., 31(4), Article 108. ![]() [31]Liu, L., Zhang, L., Xu, Y., et al., 2008. A local/global approach to mesh parameterization. Comput. Graph. Forum, 27(5):1495-1504. ![]() [32]Mullen, P., Tong, Y., Alliez, P., et al., 2008. Spectral conformal parameterization. Comput. Graph. Forum, 27(5):1487-1494. ![]() [33]Pinkall, U., Polthier, K., 1993. Computing discrete minimal surface and their conjugates. Exp. Math., 2(1):15-36. ![]() [34]Sander, P., Snyder, J., Gortler, S., et al., 2001. Texture mapping progressive meshes. Proc. 28th Annual Conf. on Computer Graphics and Interactive Techniques, p.409-416. ![]() [35]Saucan, E., Appleboim, E., Barak-Shimron, E., et al., 2008. Local versus global in quasiconformal mapping for medical imaging. J. Math. Imag. Vis., 32(3):293-311. ![]() [36]Sheffer, A., de Sturler, E., 2001. Parameterization of faceted surfaces for meshing using angle-based flattening. Eng. Comput., 17(3):326-337. ![]() [37]Sheffer, A., Lévy, B., Mogilnitsky, M., et al., 2005. ABF++: fast and robust angle based flattening. ACM Trans. Graph., 24(2):311-330. ![]() [38]Sheffer, A., Praun, E., Rose, K., 2007. Mesh parameterization methods and their applications. Comput. Graph. Vis., 2(2):105-171. ![]() [39]Sorkine, O., Alexa, M., 2007. As-rigid-as-possible surface modeling. Proc. Eurographics Symp. on Geometry Processing, p.109-116. ![]() [40]Tutte, W.T., 1963. How to draw a graph. Proc. London Math. Soc., 13(3):743-768.. ![]() [41]Weber, O., Zorin, D., 2014. Locally injective parametrization with arbitrary fixed boundaries. ACM Trans. Graph., 33(4), Article 75. ![]() [42]Weber, O., Myles, A., Zorin, D., 2012. Computing extremal quasiconformal maps. Comput. Graph. Forum, 31(5):1679-1689. ![]() [43]Yoshizawa, S., Belyaev, A., Seidel, H., 2004. A fast and simple stretch-minimizing mesh parameterization. Proc. Shape Modeling Applications, p.200-208. ![]() [44]Zayer, R., Lévy, B., Seidel, H., 2007. Linear angle based parameterization. Proc. 5th Eurographics Symp. on Geometry Processing, p.135-141. ![]() [45]Zhang, L., Liu, L., Gotsman, C., et al., 2010. Mesh reconstruction by meshless denoising and parameterization. Comput. Graph., 34(3):198-208. ![]() [46]Zhao, X., Su, Z., Gu, X., et al., 2013. Area-preservation mapping using optimal mass transport. IEEE Trans. Visual. Comput. Graph., 19(12):2838-2847. ![]() [47]Zigelman, G., Kimmel, R., Kiryati, N., 2002. Texture mapping using surface flattening via multidimensional scaling. IEEE Trans. Visual. Comput. Graph., 8(2):198-207. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>