CLC number: TP391; V474
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-05-10
Cited: 4
Clicked: 8787
Jing-fa Liu, Liang Hao, Gang Li, Yu Xue, Zhao-xia Liu, Juan Huang. Multi-objective layout optimization of a satellite module using the Wang-Landau sampling method with local search[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500292 @article{title="Multi-objective layout optimization of a satellite module using the Wang-Landau sampling method with local search", %0 Journal Article TY - JOUR
Abstract: This paper’s main contributions are introducing the Wang-Landau method (W-L) for solving the layout optimization of a satellite module problem and connecting the W-L with L-S to form the proposed method. This is new and useful to solve the layout optimization of a satellite module problem.
求解多目标卫星舱布局优化问题的带局部搜索的Wang-Landau抽样算法创新点:将Wang-Landau随机抽样算法和基于梯度法的局部搜索算法相结合,并引入一些启发式布局更新策略,提出了一种新的混合算法。实验结果表明该算法可以有效解决多目标卫星舱组件布局优化问题。 方法:借鉴罚函数思想把带约束的优化问题转化为不带约束的优化问题;采用二分法找到卫星舱的最小半径;提出快速干涉量计算方法;通过结合Wang-Landau抽样算法,基于梯度法的局部搜索算法和启发式布局更新策略构建了一种混合算法(WL-LS)。 结论:通过结合Wang-Landau抽样算法、局部搜索算法和启发式布局更新策略,所提出的混合算法在实验结果上优于现有的最好算法,是一种求解多目标卫星舱布局优化问题的有效算法。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Allen, S.D., Burke, E.K., Kendall, G., 2011. A hybrid placement strategy for the three-dimensional strip packing problem. Eur. J. Oper. Res., 209(3):219-227. ![]() [2]Bennell, J.A., Dowsland, K.A., Dowsland, W.B., 2001. The irregular cutting-stock problem—a new procedure for deriving the no-fit polygon. Comput. Oper. Res., 28(3):271-287. ![]() [3]Chen, W., Shi, Y.J., Teng, H.F., 2008. An improved differential evolution with local search for constrained layout optimization of satellite module. LNCS, 5227:742-749. ![]() [4]Crainic, T.G., Perboli, G., Rei, W., et al., 2011. Efficient lower bounds and heuristics for the variable cost and size bin packing problem. Comput. Oper. Res., 38(11):1474-1482. ![]() [5]Gonçalves, J.F., Resende, M.G., 2011. A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem. J. Comb. Optim., 22(2):180-201. ![]() [6]He, K., Mo, D.Z., Xu, R.C., et al., 2013. A quasi-physical algorithm based on coarse and fine adjustment for solving circles packing problem with constraints of equilibrium. Chin. J. Comput., 36(6):1224-1234 (in Chinese). ![]() [7]Huang, W.Q., Kang, Y., 2004. A short note on a simple search heuristic for the diskspacking problem. Ann. Oper. Res., 131(1-4):101-108. ![]() [8]Huo, J.Z., Teng, H.F., 2009. Optimal layout design of a satellite module using a coevolutionary method with heuristic rules. J. Aerosp. Eng., 22(2):101-111. ![]() [9]Jin, B., Teng, H.F., 2007. Case-based evolutionary design approach for satellite module layout. J. Sci. Ind. Res., 66(12):989-994. ![]() [10]Khanafer, A., Clautiaux, F., Talbi, E.G., 2012. Tree-decomposition based heuristics for the two-dimensional bin packing problem with conflicts. Comput. Oper. Res., 39(1):54-63. ![]() [11]Landau, D.P., Tsai, S.H., Exler, M., 2004. A new approach to Monte Carlo simulations in statistical physics: Wang-Landau sampling. Am. J. Phys., 72(10):1294-1302. ![]() [12]Lei, K.Y., Qiu, Y.H., 2006. A study of constrained layout optimization using adaptive particle swarm optimizer. J. Comput. Res. Dev., 43:1724-1731 (in Chinese). ![]() [13]Li, Z.Q., 2010. A fast projection-separation approach for collision detection between polytopes. J. Comput. Aid. Des. Comput. Graph., 22(4):639-646 (in Chinese). ![]() [14]Li, Z.Q., Xie, Y.F., Tian, Z.J., et al., 2012. A heuristic particle swarm optimization with quasi-human strategy for weighted circles packing problem. 8th Int. Conf. on Natural Computation, p.723-727. ![]() [15]Liu, J.F., Li, G., 2010. Basin filling algorithm for the circular packing problem with equilibrium behavioral constraints. Sci. Chin. Inf. Sci., 53(5):885-895 (in Chinese). ![]() [16]Liu, J.F., Xue, S.J., Liu, Z.X., et al., 2009. An improved energy landscape paving algorithm for the problem of packing circles into a larger containing circle. Comput. Ind. Eng., 57(3):1144-1149. ![]() [17]Liu, J.F., Li, G., Chen, D.B., et al., 2010. Two-dimensional equilibrium constraint layout using simulated annealing. Comput. Ind. Eng., 59(4):530-536. ![]() [18]Liu, J.F., Li, G., Geng, H.T., 2011. A new heuristic algorithm for the circular packing problem with equilibrium constraints. Sci. Chin. Inf. Sci., 54(8):1572-1584. ![]() [19]Liu, Z.W., Teng, H.F., 2008. Human–computer cooperative layout design method and its application. Comput. Ind. Eng., 55(4):735-757. ![]() [20]Martello, S., Pisinger, D., Vigo, D., 2000. The three- dimensional bin packing problem. Oper. Res., 48(2):256-267. ![]() [21]Moon, I., Nguyen, T.V.L., 2014. Container packing problem with balance constraints. OR Spectr., 36(4):837-878. ![]() [22]Schulz, B.J., Binder, K., Müller, M., et al., 2003. Avoiding boundary effects in Wang-Landau sampling. Phys. Rev. E, 67(6):067102. ![]() [23]Seaton, D.T., Wüst, T., Landau, D.P., 2010. Collapse transitions in a flexible homopolymer chain: application of the Wang-Landau algorithm. Phys. Rev. E, 81(1):011802. ![]() [24]Sun, Z.G., Teng, H.F., 2003. Optimal layout design of a satellite module. Eng. Optim., 35(5):513-529. ![]() [25]Tang, F., Teng, H.F., 1999. A modified genetic algorithm and its application to layout optimization. J. Softw., 10(10): 1096-1102 (in Chinese). ![]() [26]Teng, H.F., Chen, Y., Zeng, W., et al., 2010. A dual-system variable-grain cooperative coevolutionary algorithm: satellite-module layout design. IEEE Trans. Evol. Comput., 14(3):438-455. ![]() [27]Wang, F., Landau, D.P., 2001. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett., 86(10):2050. ![]() [28]Wang, Y.S., Teng, H.F., 2009. Knowledge fusion design method: satellite module layout. Chin. J. Aeronaut., 22(1): 32-42. ![]() [29]Wu, M.H., Yu, Y.X., Zhou, J., 1997. An octree algorithm for collision detection using space partition. Chin. J. Comput., 20(9):849-854 (in Chinese). ![]() [30]Xu, Y.C., Xiao, R.B., 2008. Ant colony algorithm for layout optimization with equilibrium constraints. Contr. Dec., 23(1):25-29 (in Chinese). ![]() [31]Zhang, B., Teng, H.F., Shi, Y.J., 2008. Layout optimization of satellite module using soft computing techniques. Appl. Soft Comput., 8(1):507-521. ![]() [32]Zhang, D.F., Deng, A.S., Kang, Y., 2005. A hybrid heuristic algorithm for the rectangular packing problem. Int. Conf. on Computational Science, p.783-791. ![]() [33]Zhang, Z.H., Wang, Y.S., Teng, H.F., et al., 2013. Parallel dual-system cooperative co-evolutionary differential evolution algorithm with human-computer cooperation for multi-cabin satellite layout optimization. J. Converg. Inform. Technol., 8(4):711-720. ![]() [34]Zhou, C., Bhatt, R.N., 2005. Understanding and improving the Wang-Landau algorithm. Phys. Rev. E, 72(2):025701. ![]() [35]Zhou, C., Gao, L., Gao, H.B., 2005. Particle swarm optimization based algorithm for constrained layout optimization. Contr. Dec., 20(1):36-40 (in Chinese). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>