CLC number: TP273
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-02-28
Cited: 0
Clicked: 8105
Guo-liang Tao, Ce Shang, De-yuan Meng, Chao-chao Zhou. Posture control of a 3-RPS pneumatic parallel platform with parameter initialization and an adaptive robust method[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500353 @article{title="Posture control of a 3-RPS pneumatic parallel platform with parameter initialization and an adaptive robust method", %0 Journal Article TY - JOUR
含参数初值整定和自适应鲁棒方法的3-RPS气动并联平台位姿控制关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Andrievsky, B., Kazunin, D.V., Kostygova, D.M., et al., 2014. Control of pneumatically actuated 6-DOF Stewart platform for driving simulator. Proc. 19th Int. Conf. on Methods and Models in Automation and Robotics, p.663-668. ![]() [2]Atkeson, C.G., An, C.H., Hollerbach, J.M., 1985. Rigid body load identification for manipulators. Proc. 24th IEEE Conf. on Decision and Control, p.996-1002. ![]() [3]Carneiro, J.F., de Almeida, F.G., 2007. Heat transfer evaluation of industrial pneumatic cylinders. {em Proc. Instit. Mech. Eng. Part I: J. Syst. Contr. Eng.}, 221(1):119-128. ![]() [4]Chen, Z., Yao, B., Wang, Q.F., 2013a. Accurate motion control of linear motors with adaptive robust compensation of nonlinear electromagnetic field effect. IEEE/ASME Trans. Mechatron., 18(3):1122-1129. ![]() [5]Chen, Z., Yao, B., Wang, Q.F., 2013b. Adaptive robust precision motion control of linear motors with integrated compensation of nonlinearities and bearing flexible modes. IEEE Trans. Ind. Inform., 9(2):965-973. ![]() [6]Chen, Z., Yao, B., Wang, Q.F., 2015. $mu$-synthesis-based adaptive robust control of linear motor driven stages with high-frequency dynamics: a case study. IEEE/ASME Trans. Mechatron., 20(3):1482-1490. ![]() [7]Cheng, Y.M., Chen, Y.S., 2013. An angle trajectory tracking for a 3-DOF pneumatic motion platform by the NI compact RIO embedded system. J. Mech. Eng. Autom., 3:14-21. ![]() [8]Díaz-Rodríguez, M., Mata, V., Valera, Á., et al., 2010. A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters. Mech. Mach. Theory, 45(9):1337-1356. ![]() [9]Farhat, N., Mata, V., Page, Á., et al., 2008. Identification of dynamic parameters of a 3-DOF RPS parallel manipulator. Mech. Mach. Theory, 43(1):1-17. ![]() [10]Girin, A., Plestan, F., Brun, X., et al., 2009. High-order sliding-mode controllers of an electropneumatic actuator: application to an aeronautic benchmark. IEEE Trans. Contr. Syst. Technol., 17(3):633-645. ![]() [11]Goodwin, G.C., Mayne, D.Q., 1987. A parameter estimation perspective of continuous time model reference adaptive control. Automatica, 23(1):57-70. ![]() [12]Grewal, K.S., Dixon, R., Pearson, J., 2011. Control design for a pneumatically actuated parallel link manipulator. Proc. 21st Int. Conf. on Systems Engineering, p.43-48. ![]() [13]Grewal, K.S., Dixon, R., Pearson, J., 2012. LQG controller design applied to a pneumatic Stewart-Gough platform. Int. J. Autom. Comput., 9(1):45-53. ![]() [14]Grotjahn, M., Heimann, B., Abdellatif, H., 2004. Identification of friction and rigid-body dynamics of parallel kinematic structures for model-based control. Multibody Syst. Dynam., 11(3):273-294. href[doi:10.1023/B:MUBO.0000029426.05860.c2] ![]() [15]Khayati, K., Bigras, P., Dessaint, L.A., 2009. LuGre model-based friction compensation and positioning control for a pneumatic actuator using multi-objective output-feedback control via LMI optimization. Mechatronics, 19(4):535-547. ![]() [16]Kimura, T., Hara, S., Fujita, T., et al., 1997. Feedback linearization for pneumatic actuator systems with static friction. Contr. Eng. Pract., 5(10):1385-1394. ![]() [17]Meng, D., Tao, G., Chen, J., et al., 2011. Modeling of a pneumatic system for high-accuracy position control. Proc. Int. Conf. on Fluid Power and Mechatronics, p.505-510. ![]() [18]Meng, D., Tao, G., Zhu, X., 2013. Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders. Int. J. Contr., 86(9):1620-1633. ![]() [19]Merlet, J.P., 2002. Parallel Robots. Kluwer Academic Publishers, Norwell, MA, USA. ![]() [20]Pfreundschuh, G.H., Kumar, V., Sugar, T.G., 1991. Design and control of a 3-DOF in-parallel actuated manipulator. IEEE Int. Conf. on Robotics and Automation, p.1659-1664. ![]() [21]Pradipta, J., Klünder, M., Weickgenannt, M., et al., 2013. Development of a pneumatically driven flight simulator Stewart platform using motion and force control. Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.158-163. ![]() [22]Ramsauer, M., Kastner, M., Ferrara, P., et al., 2012. A pneumatically driven Stewart platform used as fault detection device. Appl. Mech. Mater., 186:227-233. href[doi:10.4028/www.scientific.net/AMM.186.227] ![]() [23]Richardson, R., Plummer, A.R., Brown, M.D., 2001. Self-tuning control of a low-friction pneumatic actuator under the influence of gravity. IEEE Trans. Contr. Syst. Technol., 9(2):330-334. ![]() [24]Schulte, H., Hahn, H., 2004. Fuzzy state feedback gain scheduling control of servo-pneumatic actuators. Contr. Eng. Pract., 12(5):639-650. ![]() [25]Smaoui, M., Brun, X., Thomasset, D., 2006. A study on tracking position control of an electropneumatic system using backstepping design. Contr. Eng. Pract., 14(8):923-933. ![]() [26]Tao, G., Zuo, H., 2014. Cross-coupling adaptive robust control study of single/multiple 3-DOF pneumatic parallel platforms. Proc. 9th JFPS Int. Symp. on Fluid Power. ![]() [27]Wang, J., Fan, L., Hu, L., 2005. Positional forward solution and numeric-symbolic solution of singular configuration analysis for 3-RPS parallel platform mechanism. J. Mach. Des., 22(5):15-19 (in Chinese). ![]() [28]Yao, B., Tomizuka, M., 1997. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica, 33(5):893-900. ![]() [29]Yao, J., Jiao, Z., Ma, D., 2014a. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping. IEEE Trans. Ind. Electron., 61(11):6285-6293. ![]() [30]Yao, J., Jiao, Z., Ma, D., et al., 2014b. High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties. IEEE/ASME Trans. Mechatron., 19(2):633-641. ![]() [31]Zheng, K.J., Cui, P., Guo, H.J., 2011. Kinematics and static characteristics analysis of 3-RPS parallel mechanism. J. Mach. Des., 28(9) (in Chinese). ![]() [32]Zhu, X., Tao, G., Yao, B., et al., 2008. Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles. Automatica, 44(9):2248-2257. ![]() [33]Zhu, X., Tao, G., Yao, B., et al., 2009. Integrated direct/indirect adaptive robust posture trajectory tracking control of a parallel manipulator driven by pneumatic muscles. IEEE Trans. Contr. Syst. Technol., 17(3):576-588. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>