CLC number: TP316.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-07-11
Cited: 0
Clicked: 7027
Yun-xiang Zhao, Wan-xin Zhang, Dong-sheng LI, Zhen Huang, Min-ne Li, Xi-cheng Lu. Pegasus: a distributed and load-balancing fingerprint identification system[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500487 @article{title="Pegasus: a distributed and load-balancing fingerprint identification system", %0 Journal Article TY - JOUR
Abstract: The authors present a distributed load balanced fingerprint identification system using big data technologies. The paper is interesting and novel.
负载均衡的分布式指纹识别系统关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Cappelli, R., Ferrara, M., Franco, A., et al., 2007. Fingerprint verification competition 2006. Biomet. Technol. Today, 15(7-8):7-9. ![]() [2]Dede, E., Govindaraju, M., Gunter, D., et al., 2013. Performance evaluation of a MongoDB and Hadoop platform for scientific data analysis. Proc. 4th ACM Workshop on Scientific Cloud Computing, p.13-20. ![]() [3]Galar, M., Derrac, J., Peralta, D., et al., 2015a. A survey of fingerprint classification part I: taxonomies on feature extraction methods and learning models. Knowl.-Based Syst., 81:76-97. ![]() [4]Galar, M., Derrac, J., Peralta, D., et al., 2015b. A survey of fingerprint classification part II: experimental analysis and ensemble proposal. Knowl.-Based Syst., 81:98-116. ![]() [5]Gutiérrez, P.D., Lastra, M., Herrera, F., et al., 2014. A high performance fingerprint matching system for large databases based on GPU. IEEE Trans. Inform. Forens. Secur., 9(1):62-71. ![]() [6]Hong, L., Wan, Y., Jain, A., 1998. Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans. Patt. Anal. Mach. Intell., 20(8):777-789. ![]() [7]Indrawan, G., Sitohang, B., Akbar, S., 2011. Parallel processing for fingerprint feature extraction. Proc. Int. Conf. on Electrical Engineering and Informatics, p.1-6. ![]() [8]Kanoje, S., Powar, V., Mukhopadhyay, D., 2015. Using MongoDB for social networking website deciphering the pros and cons. Proc. Int. Conf. on Innovations in Information, Embedded and Communication Systems, p.1-3. ![]() [9]Lastra, M., Carabaño, J., Gutiérrez, P., et al., 2015. Fast fingerprint identification using GPUs. Inform. Sci., 301:195-214. ![]() [10]Li, J., Li, D., Ye, Y., et al., 2015. Efficient multi-tenant virtual machine allocation in cloud data centers. Tsing-hua Sci. Technol., 20(1):81-89. ![]() [11]Liu, C., Ouyang, K., Chu, X., et al., 2015. R-memcached: a reliable in-memory cache for big key-value stores. Tsinghua Sci. Technol., 20(6):560-573. ![]() [12]Mader, K., Donahue, L., Müller, R., et al., 2014. High-throughput, scalable, quantitative, cellular phenotyping using X-ray tomographic microscopy. Proc. 2nd Int. Work-Conf. on Bioinformatics and Biomedical Engineering, p.1483-1498. ![]() [13]Malakar, R., Vydyanathan, N., 2013. A CUDA-enabled Hadoop cluster for fast distributed image processing. Proc. National Conf. on Parallel Computing Technologies, p.1-5. ![]() [14]Peralta, D., Triguero, I., Sanchez-Reillo, R., et al., 2014. Fast fingerprint identification for large databases. Patt. Recog., 47(2):588-602. ![]() [15]Peralta, D., Galar, M., Triguero, I., et al., 2015. A survey on fingerprint minutiae-based local matching for verification and identification: taxonomy and experimental evaluation. Inform. Sci., 315:67-87. ![]() [16]Plugge, E., Hawkins, D., Membrey, P., 2010. The Definitive Guide to MongoDB: the NoSQL Database for Cloud and Desktop Computing. Apress. ![]() [17]Shu, Y., Gu, Y.J., Chen, J., 2014. Dynamic authentication with sensory information for the access control systems. IEEE Trans. Parall. Distr. Syst., 25(2):427-436. ![]() [18]Sweeney, C., Liu, L., Arietta, S., et al., 2011. HIPI: a Hadoop Image Processing Interface for Image-Based MapReduce Tasks. MS Thesis, University of Virginia, USA. ![]() [19]Xu, J., Jiang, J., Dou, Y., et al., 2014. A low-cost fully pipelined architecture for fingerprint matching. Proc. 12th Int. Conf. on Signal Processing, p.413-418. ![]() [20]Zhang, Z., Li, D., Wu, K., 2016. Large-scale virtual machines provisioning in clouds: challenges and approaches. Front. Comput. Sci., 10(1):2-18. ![]() [21]Zhao, Y., Zhang, W., Li, D., et al., 2015. DFIS: a scalable distributed fingerprint identification system. Proc. 15th Int. Conf. on Algorithms and Architectures for Parallel Processing, p.162-175. ![]() [22]Zhu, E., Yin, J., Zhang, G., 2004. Computation of fingerprint inter-ridge distance. J. Microelectron. Comput., 21(10):7-9 (in Chinese). ![]() [23]Zhu, E., Yin, J., Zhang, G., 2005. Fingerprint matching based on global alignment of multiple reference minutiae. Patt. Recog., 38(10):1685-1694. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>