CLC number: TP273
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-01-22
Cited: 1
Clicked: 9142
Chang-bin Yu, Yin-qiu Wang, Jin-liang Shao. Optimization of formation for multi-agent systems based on LQR[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1500490 @article{title="Optimization of formation for multi-agent systems based on LQR", %0 Journal Article TY - JOUR
Abstract: The authors of this paper provide three algorithms for optimal linear formation control of multi-agent systems. The agents are considered to have single integrator dynamics. In this connection they used LQR method to minimize collective objective of all agents and the individual objective of each agent. Three cases of independent agents, physically bounded agents, and a network of agents with fixed topology are considered. The paper is technically correct and the mathematical derivations are accurate. The results are a bit interesting.
基于线性二次最优化的多智能体编队控制创新点:针对三种不同的单积分器多智能体最优编队情况,分别提出相应的网络连接拓扑以及局部反馈矩阵;不同于其他论文不能给出网络拓扑以及局部最优反馈矩阵的具体解析解,本文给出相应的解析解,并且证明解析解与实际物理系统完全相符。 方法:应用代数图论以及矩阵理论的相关知识,针对无物理耦合的多智能体系统,通过求解代数里卡蒂方程,设计智能体之间的网络连接拓扑以及局部反馈矩阵,保证多智能体系统在完成编队的同时相应的LQR指标最优。针对有物理耦合的多智能体系统,同样通过求解代数里卡蒂方程,得到相应的网络连接拓扑以及局部反馈矩阵,保证多智能体系统在完成编队的基础上使相应的LQR指标最优;针对有物理耦合但无法设计网络拓扑的多智能体系统,将最优指标写成局部反馈增益的函数,通过求最优指标的导数,得到最优局部反馈增益。 结论:对于无物理耦合单积分器多智能体的编队问题与有物理耦合单积分器多智能体的编队问题,分别设计网络连接拓扑以及局部反馈矩阵,在多智能体系统完成编队的基础上保证相应的性能指标达到最优。对于有物理耦合但无法改变通讯网络拓扑的单积分器多智能体系统编队问题,设计最优局部反馈增益,在多智能体系统完成编队的同时保证性能指标最优。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alefeld, G., Schneider, N., 1982. On square roots of M-matrices. Linear Algebra Appl., 42:119-132. ![]() [2]Altafini, C., 2013. Consensus problems on networks with antagonistic interactions. IEEE Trans. Autom. Contr., 58(4):935-946. ![]() [3]Anderson, B.D.O., Moore, J.B., 2007. Optimal Control: Linear Quadratic Methods. Dover Publications, USA. ![]() [4]Basiri, M., Bishop, A.N., Jensfelt, P., 2010. Distributed control of triangular formations with angle-only constraints. Syst. Contr. Lett., 59(2):147-154. ![]() [5]Bishop, A.N., 2011. A very relaxed control law for bearing-only triangular formation control. Proc. 18th IFAC World Congress, p.5991-5998. ![]() [6]Borrelli, F., Keviczky, T., 2008. Distributed LQR design for identical dynamically decoupled systems. IEEE Trans. Autom. Contr., 53(8):1901-1912. ![]() [7]Cao, Y., Ren, W., 2010. Optimal linear-consensus algorithms: an LQR perspective. IEEE Trans. Syst. Man Cybern. Part B, 40(3):819-830. ![]() [8]Dimarogonas, D.V., Johansson, K.H., 2010. Stability analysis for multi-agent systems using the incidence matrix: quantized communication and formation control. Automatica, 46(4):695-700. ![]() [9]Ghadami, R., Shafai, B., 2013. Decomposition-based distributed control for continuous-time multi-agent systems. IEEE Trans. Autom. Contr., 58(1):258-264. ![]() [10]Ghadami, R., Shafai, B., 2014. Distributed observer-based LQR design for multi-agent systems. World Automation Congress, p.520-525. ![]() [11]Godsil, C., Royle, G.F., 2013. Algebraic Graph Theory. Springer, USA. ![]() [12]Guo, J., Lin, Z., Cao, M., et al., 2010. Adaptive control schemes for mobile robot formations with triangularised structures. IET Contr. Theory Appl., 4(9):1817-1827. ![]() [13]Horn, R.A., Johnson, C.R., 1985. Matrix Analysis. Cambridge University Press, USA. ![]() [14]Horn, R.A., Johnson, C.R., 1991. Topics in Matrix Analysis. Cambridge University Press, USA. ![]() [15]Huang, H., Yu, C., Wu, Q., 2010. Distributed LQR design for multi-agent formations. Proc. 49th IEEE Conf. on Decision and Control, p.4535-4540. ![]() [16]Li, Z., Duan, Z., Lewis, F.L., 2014. Distributed robust consensus control of multi-agent systems with heterogeneous matching uncertainties. Automatica, 50(3):883-889. ![]() [17]Liu, T., Jiang, Z., 2014. Distributed nonlinear control of mobile autonomous multi-agents. Automatica, 50(4):1075-1086. ![]() [18]Movric, K.H., Lewis, F.L., 2014. Cooperative optimal control for multi-agent systems on directed graph topologies. IEEE Trans. Autom. Contr., 59(3):769-774. ![]() [19]Oh, K.K., Park, M.C., Ahn, H.S., 2015. A survey of multi-agent formation control. Automatica., 53(3):424-440. ![]() [20]Qin, J., Gao, H., 2012. A sufficient condition for convergence of sampled-data consensus for double-integrator dynamics with nonuniform and time-varying communication delays. IEEE Trans. Autom. Contr., 57(9):2417-2422. ![]() [21]Qin, J., Gao, H., Zheng, W.X., 2011. Second-order consensus for multi-agent systems with switching topology and communication delay. Syst. Contr. Lett., 60(6):390-397. ![]() [22]Ren, W., Beard, R.W., Atkins, E.M., 2007. Information consensus in multivehicle cooperative control. IEEE Contr. Syst. Mag., 27(2):71-82. ![]() [23]Shi, G., Sou, K.C., Sandberg, H., et al., 2014. A graph-theoretic approach on optimizing informed-node selection in multi-agent tracking control. Phys. D, 267:104-111. ![]() [24]Xiao, F., Wang, L., Chen, J., et al., 2009. Finite-time formation control for multi-agent systems. Automatica, 45(11):2605-2611. ![]() [25]Yu, C., Hendrickx, J.M., Fidan, B., et al., 2007. Three and higher dimensional autonomous formations: rigidity, persistence and structural persistence. Automatica, 43(3):387-402. ![]() [26]Yu, C., Anderson, B.D.O., Dasgupta, S., et al., 2009. Control of minimally persistent formations in the plane. SIAM J. Contr. Optim., 48(1):206-233. ![]() [27]Zhang, H., Lewis, F.L., Das, A., 2011. Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback. IEEE Trans. Autom. Contr., 56(8):1948-1952. ![]() [28]Zhao, S., Lin, F., Peng, K., et al., 2014. Distributed control of angle-constrained cyclic formations using bearing-only measurements. Syst. Contr. Lett., 63:12-24. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>