
CLC number: TP39
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-11-20
Cited: 0
Clicked: 10856
Fang Li, Jia Sheng, San-yuan Zhang. Laplacian sparse dictionary learning for image classification based on sparse representation[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.1600039 @article{title="Laplacian sparse dictionary learning for image classification based on sparse representation", %0 Journal Article TY - JOUR
基于稀疏表示的拉普拉斯稀疏字典图像分类关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Aharon, M., Elad, M., Bruckstein, A., 2006. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process., 54(11): 4311-4322. ![]() [2]Bąk, S., Corvee, E., Bremond, F., et al., 2012. Boosted human re-identification using Riemannian manifolds. Image Vis. Comput., 30(6):443-452. ![]() [3]Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J., 1997. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Patt. Anal. Mach. Intell., 19(7):711-720. ![]() [4]Belkin, M., Niyogi, P., 2001. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, p.585-591. ![]() [5]Chapelle, O., Schölkopf, B., Zien, A., 2006. Semi-supervised Learning. MIT Press, Cambridge, MA. ![]() [6]Elhamifar, E., Vidal, R., 2013. Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Patt. Anal. Mach. Intell., 35(11):2765-2781. ![]() [7]Gangeh, M.J., Ghodsi, A., Kamel, M.S., 2013. Kernelized supervised dictionary learning. IEEE Trans. Signal Process., 61(19):4753-4767. ![]() [8]Gao, S., Tsang, I.W.H., Ma, Y., 2014. Learning category-specific dictionary and shared dictionary for fine-grained image categorization. IEEE Trans. Image Process., 23(2): 623-634. ![]() [9]Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J., 2001. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Patt. Anal. Mach. Intell., 23(6):643-660. ![]() [10]He, X., Niyogi, P., 2003. Locality preserving projections. 17th Annual Conf. on Neural Information Processing Systems, p.186-197. ![]() [11]He, X., Yan, S., Hu, Y., et al., 2005. Face recognition using Laplacian faces. IEEE Trans. Patt. Anal. Mach. Intell., 27(3):328-340. ![]() [12]Huang, M., Yang, W., Jiang, J., et al., 2014. Brain extraction based on locally linear representation-based classification. NeuroImage, 92:322-339. ![]() [13]Lee, H., Battle, A., Raina, R., et al., 2006. Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems. MIT Press, Cambridge, MA, p.801-808. ![]() [14]Lee, K.C., Ho, J., Kriegman, D.J., 2005. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Patt. Anal. Mach. Intell., 27(5):684-698. ![]() [15]Lu, X., Li, X., 2014. Group sparse reconstruction for image segmentation. Neurocomputing, 136:41-48. ![]() [16]Lu, X., Wu, H., Yuan, Y., et al., 2013. Manifold regularized sparse NMF for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens., 51(5):2815-2826. ![]() [17]Lu, Y., Lai, Z., Fan, Z., et al., 2015. Manifold discriminant regression learning for image classification. Neurocomputing, 166:475-486. ![]() [18]Martinez, A.M., Benavente, R., 1998. The AR Face Database. CVC Technical Report, No. 24. Centre de Visió per Computador, Universitat Autònoma de Barcelona, Edifici O, Bellaterra, Barcelona. ![]() [19]Peleg, T., Elad, M., 2014. A statistical prediction model based on sparse representations for single image super- resolution. IEEE Trans. Image Process., 23(6):2569-2582. ![]() [20]Qiao, L., Chen, S., Tan, X., 2010. Sparsity preserving projections with applications to face recognition. Patt. Recogn., 43(1):331-341. ![]() [21]Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500): 2323-2326. ![]() [22]Rubinstein, R., Bruckstein, A.M., Elad, M., 2010a. Dictionaries for sparse representation modeling. Proc. IEEE, 98(6):1045-1057. ![]() [23]Rubinstein, R., Zibulevsky, M., Elad, M., 2010b. Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE Trans. Signal Process., 58(3): 1553-1564. ![]() [24]Shao, L., Yan, R., Li, X., et al., 2014. From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms. IEEE Trans. Cybern., 44(7):1001-1013. ![]() [25]Tenenbaum, J.B., de Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323. ![]() [26]Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.), 58(2):267-288. ![]() [27]Turk, M., Pentland, A., 1991. Eigenfaces for recognition. J. Cogn. Neurosci., 3(1):71-86. ![]() [28]Wang, W., Wang, R., Huang, Z., et al., 2015. Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.2048-2057. ![]() [29]Wright, J., Yang, A.Y., Ganesh, A., et al., 2009. Robust face recognition via sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 31(2):210-227. ![]() [30]Yang, A.Y., Zhou, Z., Balasubramanian, A.G., et al., 2013. Fast-l1 minimization algorithms for robust face recognition. IEEE Trans. Image Process., 22(8):3234-3246. ![]() [31]Yang, J., Zhang, L., Xu, Y., et al., 2012. Beyond sparsity: the role of l1-optimizer in pattern classification. Patt. Recogn., 45(3):1104-1118. ![]() [32]Yang, J.F., Zhang, Y., 2011. Alternating direction algorithms for -problems in compressive sensing. SIAM J. Sci. Comput., 33(1):250-278. ![]() [33]Yang, M., Zhang, L., Yang, J., et al., 2010. Metaface learning for sparse representation-based face recognition. 17th IEEE Int. Conf. on Image Processing, p.1601-1604. ![]() [34]Yang, M., van Gool, L., Zhang, L., 2013. Sparse variation dictionary learning for face recognition with a single training sample per person. IEEE Int. Conf. on Computer Vision, p.689-696. ![]() [35]Yang, M., Dai, D., Shen, L., et al., 2014. Latent dictionary learning for sparse representation-based classification. IEEE Conf. on Computer Vision and Pattern Recognition, p.4138-4145. ![]() [36]Zhang, Z., Xu, Y., Yang, J., et al., 2015. A survey of sparse representation: algorithms and applications. IEEE Access, 3:490-530. ![]() [37]Zheng, M., Bu, J., Chen, C., et al., 2011. Graph regularized sparse coding for image representation. IEEE Trans. Image Process., 20(5):1327-1336. ![]() [38]Zhu, P., Zuo, W., Zhang, L., et al., 2014. Image set-based collaborative representation for face recognition. IEEE Trans. Inform. Forens. Secur., 9(7):1120-1132. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>